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Abstract

Learning sentence embedding is a fundamen-
tal problem in the natural language processing
domain. Many state-of-the-art models are pre-
trained on large corpora and then fine-tuned
to solve downstream tasks. However, current
large language models are vulnerable to adver-
sarial attacks due to aggressive fine-tuning on
pre-trained models, which compromises their
ability to generalize to unseen data. In this pa-
per, we propose V-advCSE (Virtual adversarial
contrastive learning for sentence embeddings),
an unsupervised contrastive learning frame-
work that adopts a virtual adversarial training
approach for sentence embeddings. Instead of
using adversarial training, which requires la-
bels for generating adversarial examples, we
leveraged a virtual adversarial training frame-
work that does not require labels to generate
adversarial examples. It applies perturbations
in the embedding space using projected gradi-
ent ascent methods. This maximizes the differ-
ence within the model’s output distribution in
the constraint region, ensuring no significant
change in the overall output distribution. We
evaluated our V-advCSE on both STS (seman-
tic textual similarity) and ANLI (adversarial
natural language inference) tasks to test perfor-
mance on both general and adversarial datasets.
Our results show that V-advCSE outperformed
SimCSE by 1.64 points on semantic textual
similarity (STS) tasks and 2.2 points on adver-
sarial natural language inference (ANLI) tasks.

1 Introduction

Learning universal sentence representations that
capture the essential semantics of a sentence, and
leveraging them in downstream tasks, has been
extensively studied in research (Gao et al., 2021;
Kiros et al., 2015; Conneau et al., 2017; Chuang
et al., 2022; Giorgi et al., 2020). Recent work has
also shown that contrastive learning in the natural
language processing domain can be effective for
various fine-tuning tasks (Gao et al., 2021; Chuang

et al., 2022; Le-Khac et al., 2020a; Wu et al., 2020).
Contrastive learning applies various data augmenta-
tion techniques to generate positive pairs, training
the model to have more similar data representations
than negative pairs. Recent work, such as SimCSE,
which uses simple dropout as a data augmentation
method to generate positive pairs, has demonstrated
better performance than more complex data aug-
mentation methods, like modifying words directly
(Gao et al., 2021).

Even though SimCSE achieves high perfor-
mance by leveraging simple dropout augmentation,
it still faces robustness issues when subjected to ad-
versarial attacks. The study revealed that large lan-
guage models are vulnerable to adversarial attacks,
which are formed by applying small perturbations
to the data (Goodfellow et al., 2014). During ad-
versarial training, we leverage constrained norm
gradients to add small perturbations to the original
sample to obtain an adversarial example. However,
employing gradient-based adversarial attacks in the
natural language processing domain is not trivial,
since the word token space is discrete. Previous
research focused on methods such as substitution-
based methods, which replace the original word
with similar words to generate adversarial exam-
ples (Ebrahimi et al., 2017; Alzantot et al., 2018;
Li et al., 2020b; Bao et al., 2021). However, these
methods are computationally inefficient as find-
ing substitution words requires high computation.
Instead, we leveraged a virtual adversarial train-
ing framework to generate adversarial examples
by applying gradient-based perturbations in the
embedding space, which can improve the model’s
generalization (Miyato et al., 2018). Virtual adver-
sarial training not only mitigates issues associated
with the need for labels in adversarial training but
also improves computational efficiency compared
to the word substitution method.

We conducted a comprehensive evaluation of
the V-advCSE model on seven standard semantic



textual similarity (STS) tasks (Agirre et al., 2016;
Cer et al., 2017; Marelli et al., 2014) with trans-
fer tasks(Pang and Lee, 2005; Hu and Liu, 2004;
Pang and Lee, 2004; Wiebe et al., 2005; Socher
et al., 2013; Voorhees and Tice, 2000; Dolan and
Brockett, 2005). In the STS tasks, our V-adv CSE
achieved 77.73% on average score of STS using
the Bert-Base model, which is 1.64% higher than
the SimCSE model. Furthermore, we conducted an
experiment on the ANLI dataset (Nie et al., 2019)
to evaluate the robustness of the model against ad-
versarial attack. Our results show that V-advCSE
is effective in improving the stability of the model
against adversarial attacks, achieving [ ]%, which
is []% higher than SimCSE.

2 Background and related work

2.1 Contrastive Learning

Contrastive learning has been studied extensively
in the computer vision domain, leading to state-
of-the-art results (Le-Khac et al., 2020b; He et al.,
2020; Chuang et al., 2020; Tian et al., 2020). The
core idea of contrastive learning is to learn repre-
sentation by pulling the distances closer between
the representations of the original image and its
augmented version (positive pairs), while increas-
ing the distance from other images (negative pairs).
Studies in the computer vision domain have re-
vealed that random cropping, flipping, and color
jittering are effective data augmentation techniques
for generating positive pairs (Oord et al., 2018).
In NLP, contrastive learning has been explored in
various contexts, such as pre-train zero-shot pre-
dictions (Rethmeier and Augenstein, 2023), text
summarization (Duan et al., 2019), and language
modeling (Logeswaran and Lee, 2018). However,
applying contrastive learning in the natural lan-
guage processing domain presents challenges due
to the discrete nature of word representation. The
most challenging aspect is selecting appropriate
data augmentation techniques to generate positive
pairs. Recent studies have revealed that aggres-
sive data augmentation techniques, such as word
cropping, deletion, and substitution for generat-
ing positive pairs, can harm the performance (Gao
et al., 2021). Instead, SimCSE (Gao et al., 2021)
used a simple dropout method to generate positive
pairs, achieving state-of-the-art performance.

2.2 Adversarial Learning

We want to begin this section by clarifying the set
of notations that we will going to use on explaining
both on adversarial and virtual adversarial learning.
Let x ∈ RI and y ∈ Q respectively denote an
input vector and an output label with I ,the input
dimension while Q is label space. We denote Dl ={
x
(n)
l , y

(n)
l | n = 1, . . . , Nl

}
to represent labeled

dataset and Dul =
{
x
(m)
ul | m = 1, . . . , Nul

}
for

unlabeled dataset. We denote output distribution
p(y|x, θ) parameterized by θ. In addition, we use
θ̂ to denote specific iteration step of parameters
during training process.

Adversarial training is a novel regularization
method designed to improve robustness against
the worst-case perturbations to the original input
(Goodfellow et al., 2014). The loss function of ad-
versarial training is defined as in equations 1 and 2,
which follows framework of Ensemble Agreement
(Bachman et al., 2014). The goal of Ensemble
Agreement is to train the model robust so that intro-
ducing random perturbation does not affect output
too much. The F is a non-negative distance mea-
suring function between two distributions, such as
Kullback–Leibler divergence, radv is perturbation
that maximizes the difference between original and
perturbed state within Lp norm, q is true distribu-
tion, p is parametric model distribution, and ϵ is
constant value that constraint the Lp norm value.

Ladv(xl, θ) = F [q(y|xl), p(y|xl + radv, θ)] (1)

radv = arg max
r;∥r∥p≤ε

F [q(y|xl), p(y|xl + r, θ)],

(2)
As indicated in the equations, the true label y is
required to produce a prediction from the model,
which frames adversarial training as a supervised
learning task. The main objective of this loss func-
tion is to approximate the true distribution q with
the model prediction p, ensuring robustness against
the adversarial attack radv. Generally, it is challeng-
ing to obtain an exact adversarial perturbation r due
to the complexity of neural networks (Goodfellow
et al., 2014). Instead, Goodfellow et al., 2014 ap-
proximated radv using linear approximations, such
as L2 and L∞ norms as shown on equation 3 and
4 respectively. While using linear approximation,
we can use one hot vector v(y; yl) to approximate
q(y|xl). We can compute∇xF [h(y;x), p(y|x, θ)]
by back propagation in neural neural networks. We



provided derivation of radv in the appendix A.

radv ≈
g

∥g∥2
, g = ∇xF [v(y; yl), p(y|xl, θ)] (3)

radv ≈ esig(g), (4)

2.3 Virtual Adversarial Learning
Even though adversarial training is effective in im-
proving the robustness of models in a supervised
setting, it is not always feasible to obtain labels
due to limited resources. Therefore, Miyato et al.,
2018 proposed a virtual adversarial training frame-
work that eliminates the need for labels, making
it suitable for semi-supervised learning (Miyato
et al., 2018). The key difference between adver-
sarial training and virtual adversarial training is
that virtual adversarial training replaces the true
distribution q with the model prediction p. This
replacement is feasible, especially if the number of
samples is large, as p should be close to q accord-
ing to the law of large numbers (Hsu and Robbins,
1947). The term “virtual” in virtual adversarial
training comes from the concept of using virtual
labels, which are generated by model predictions,
instead of actual labels. By using a virtual label,
the loss function becomes as described in equations
5 and 6. We are using x∗ to represent either xl la-
beled data or xul unlabeled data since full label
information is not always available. F is a non-
negative distance measuring function between dis-
tributions, radv is the perturbation, θ is the model
parameter, and θ̂ is current estimate of the model
parameter. The purpose of using θ̂ is to prevent the
propagation of gradients during the generation of
adversarial examples.

Lvadv(x∗, θ) = F
[
p(y|x∗, θ̂), p(y|x∗ + rvadv, θ)

]
(5)

rvadv = arg max
r;∥r∥p≤ε

F
[
p(y|x∗, θ̂), p(y|x∗ + r, θ)

]
,

(6)

3 Virtual Adversarial Contrastive
Learning

Our approach combines the standard contrastive
learning objective from SimCSE with the virtual
adversarial training framework (Miyato et al., 2018;
Gao et al., 2021). We follow the approach of un-
supervised SimCSE (Gao et al., 2021) to generate
the positive example x+ by applying a different
dropout rate to each sentence in an unlabeled sen-
tence {xi}mi=1 as a form of data augmentation. We

can simply generate the positive pair by passing
into the encoder xi twice to apply different dropout
rate. Using the Bert encoder f , we can compute the
embedding of the sentence, hi = f(xi). Therefore,
our contrastive loss function, illustrated in Equa-
tion 7, involves h and h+ as a positive pair. In
this equation, τ represents the temperature hyper
parameter, N is a mini-batch of N pairs, and sim
stands for cosine similarity.

Lcont(hi, θ) = − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

(7)

Moreover, our approach includes a virtual adversar-
ial training objective to improve the model’s robust-
ness against adversarial attacks. Instead of using
an adversarial training framework, which requires
true label information, we leverage virtual labels
produced by the model’s predictions. Since we are
focusing on unsupervised training, we do not need
label information xl. The virtual adversarial loss is
shown as follows:

Lvadv(xul, θ) = F
[
p(y|xul, θ̂), p(y|xul + rvadv, θ)

]
(8)

rvadv = arg max
r;∥r∥p≤ε

F
[
p(y|xul, θ̂), p(y|xul + r, θ)

]
,

(9)
where F is a non negative distance measuring func-
tion between two distributions, p is the model pre-
diction, rvadv is perturbation, θ is model parameter,
and θ̂ is a constant copy of model parameter. It
is important to notice that during the adversarial
example generation process, we are using a copy of
model parameter θ̂ instead of model parameter θ to
prevent gradient flow while constructing adversar-
ial examples. To obtain the worst case perturbation
that maximizes the distance between each distri-
bution, we can leverage projected gradient ascent
algorithm (Madry et al., 2017). Therefore our final
objective function becomes as equation 10 where
λ is weighting factor that controls the contribution
of Lvadv

L = Lcont + λ ∗ Lvadv (10)

Algorithm 1 shows the detailed implementation
of virtual adversarial training. Initially, we initial-
ize the random perturbation with a normal distribu-
tion centered at 0 and with a variance of σ2. From
lines 5 to 8, we run K iterations of the projected
gradient ascent algorithm to obtain the worst-case
perturbation. Previous research has revealed that



Algorithm 1 Virtual Adversarial Loss Algorithm

1: Input: X = {(x1), . . . , (xn)}: the sentence embeddings, f(x; θ): original model, f(x; θ̂): copy of
the original model parameterized by θ̂, σ2: the variance of the random initialization of perturbation
rvadv, ε: constraint bound, K: the number of iterations for perturbation estimation, η: the step size
for updating perturbation, Π: the projection operation, F : Distribution distance measuring function.

2: for all (x) ∈ X do
3: rvadv ∼ N (0, σ2)
4: for m = 1, . . . ,K do
5: gadv ← ∇rvadvF (f(x; θ̂), f(x+ rvadv; θ))
6: rvadv ← Π∥rvadv∥normtype≤ε(rvadv + ηgadv)
7: end for
8: Lvadv ← F (f(x; θ̂), f(x+ rvadv; θ))
9: end for

10: Output: Lvadv

one iteration is sufficient to achieve optimal perfor-
mance; therefore, we set K to 1 for our experiment
(Miyato et al., 2018). There are several options for
the distribution distance measuring function F, such
as KL divergence, symmetric KL divergence, and
Jensen-Shannon divergence (Andriamanalimanana
et al., 2019; Nielsen, 2020). Furthermore, various
normalization types can be used to constrain the
gradient on line 7, such as L2, and L∞ norms. We
conducted an extensive ablation study to analyze
the contribution of each options. After finding the
worst-case perturbation through K iterations, we
add the perturbation to the original embedding and
compute the virtual adversarial loss.

4 Experiment

4.1 Setup

In our experiment, we evaluated V-advCSE on
seven semantic textual similarity (STS) tasks and
various transfer tasks to analyze its impact on gen-
eralization. We followed the same settings as the
unsupervised SimCSE (Gao et al., 2021), which
did not use the STS training dataset during training
to ensure a rigorous evaluation. Our V-advCSE
was built on the SimCSE Pytorch implementation.
We utilized BERT base (Devlin et al., 2018) and
RoBERTa base (Liu et al., 2019) as encoders to
generate sentence embedding. Additionally, we ap-
plied an MLP layer with batch normalization (Ioffe
and Szegedy, 2015) on top of the [CLS] token rep-
resentation to enhance model performance. The
effects of batch normalization are detailed in the
ablation study section. Furthermore, we assessed
the model’s robustness against adversarial attacks
using the ANLI dataset (Nie et al., 2019).

4.2 Data

During unsupervised pre-training, we utilized
106 randomly sampled sentences from English
Wikipedia, which aligns with the dataset used in
unsupervised SimCSE (Gao et al., 2021). Our
model’s evaluation focused on generalization per-
formance, assessed through STS tasks and trans-
fer tasks, and its robustness against adversarial at-
tacks, tested using ANLI tasks. The STS evaluation
consist of seven semantic textual similarity tasks,
including STS 2012-2016 (Agirre et al., 2016),
the STS benchmark (Cer et al., 2017), and SICK-
Relatedness (Marelli et al., 2014), without using
their training datasets to maintain an unsupervised
setting. The transfer tasks included seven text clas-
sification tasks from SentEval (Conneau and Kiela,
2018): MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST2 (Socher et al., 2013), TREC
(Voorhees and Tice, 2000), and MRPC (Dolan and
Brockett, 2005). For these tasks, we employed
a logistic regression classifier trained on frozen
sentence embeddings, following the default config-
uration from SentEval (Conneau and Kiela, 2018).
Additionally, the robustness of our model against
adversarial attacks was evaluated using the test and
development sets of ANLI tasks (Nie et al., 2019).

4.3 Results

Baselines We compared our result with competitive
unsupervised baselines including SimCSE (Gao
et al., 2021), IS-BERT(Zhang et al., 2020), De-
CLUTR (Giorgi et al., 2021), CT-BERT (Ye et al.,
2023), SG-OPT (Kim et al., 2021), BERT-flow (Li
et al., 2020a), BERT- whitening (Su et al., 2021),

https://github.com/princeton-nlp/SimCSE


Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embeddings (avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SG-OPT-BERTbase 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
SimCSE-BERTbase (reproduced) 66.20 81.88 72.86 81.74 78.82 78.57 72.58 76.09
V-advCSE-BERTbase 72.05 83.15 75.71 83.12 79.46 79.90 70.75 77.73

Table 1: STS tasks results from different sentence embedding models .

Model MR CR SUBJ MPQA SST‘ TREC MRPC Avg.
GloVe embeddings (avg.) 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERTbase 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
SimCSE-BERTbase 80.97 86.12 94.81 89.06 86.00 88.00 73.57 85.50
V-advCSE-BERTbase 82.11 86.56 94.96 89.08 85.50 88.20 75.71 86.01

Table 2: Transfer tasks results from different sentence embedding models .

and averaged GloVe embeddings (Pennington et al.,
2014).

Semantic Textual Similarity (STS) We evalu-
ated various encoder models on 7 STS tasks. We
followed the same setting from SimCSE (Gao et al.,
2021) while evaluating these models on STS tasks.
Therefore, we used no additional regressor, fol-
lowing "all" aggregation method, and using Spear-
man’s correlation unit for evaluation (Gao et al.,
2021). Our V-advCSE on Bertbase model clearly
outperforms other unsupervised encoder models as
shown on table 1. Specifically, our model signifi-
cantly outperforms SimCSE (Gao et al., 2021) with
improving averaged Sperman’s corelation from
76.09% to 77.73%.

Transfer Tasks We showed our result for 7 dif-
ferent transfer tasks on table 2. We follwed the
same training procedure from SimCSE (Gao et al.,
2021) with training logistic regression classifier on
top of frozen sentence embeddings from the model.
Our V-advCSE model improved agerage perfor-
mance from SimCSE from 85.50% to 86.01%.

ANLI Tasks We further extended our experi-
ment to analyze the effect of virtual adversarial
training on improving the robustness against the
adversarial attack. We used ANLI dataset that con-
tains multiple rounds of adversarial tasks consisted
of test and development set. We followed train-

ing setting from (Nie et al., 2019) with training on
combination of MNLI, SNLI, ANLI, and FEVER
dataset. As shown on the table 3, our V-advCSE im-
proved average accuracy on development set from
46.2% to 48.4% and 46.8% to 48.6% on test set.
Therefore, we can conclude that our V-advCSE
improve the robustness against adversarial attack.

5 Ablation studies

In this section, we conduced extensive ablation
studies to support our model’s effectiveness. We
used BERTbase model with development set from
STS-B and tranfer tasks.

Effect of Batch Normalization In SimCSE
(Gao et al., 2021), the authors leverage a single
linear layer followed by a tanh activation function
to extract features for computing loss. In the com-
puter vision domain, it is well-known to use a two-
layer pooler with Batch Normalization (Ioffe and
Szegedy, 2015; Chen et al., 2020). We have shown
that using Batch Normalization in both SimCSE
and V-advCSE improves performance on the STS-
B and transfer tasks, as demonstrated in Table 4.
We can clearly observe that applying Batch Normal-
ization on V-advCSE result into best performance.

Choice of Different Distribution Distance
Measuring Function There are several options
for distance measuring function F from our al-



Dev Test
Method R1 R2 R3 All R1 R2 R3 All

SimCSE-BERTBASE 53.8 42.8 42.6 46.4 52.6 45.1 43.1 46.8
V-advCSE-BERTBASE 55.1 44.4 45.6 48.4 54.4 47.2 44.1 48.6

Table 3: ANLI task results on both SimCSE and V-advCSE

gorithm. According to Miyato et al., 2018, they
used KL divergence to measure the distance be-
tween each distribution. However, KL divergence
is lack of symmetry compared to Jensen-Shannon
(JS) divergence (Nielsen, 2020) and symmetric KL
divergence (Andriamanalimanana et al., 2019):

FKL(P ∥ Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(11)

FSKL(P,Q) =
1

2
(FKL(P ∥ Q) + FKL(Q ∥ P ))

(12)

FJS(P ∥ Q) =
1

2
FKL(P ∥M)+

1

2
FKL(Q ∥M)

(13)

M =
1

2
(P +Q) (14)

STS-B Avg. transfer
V-advCSE

w/ BatchNorm 84.55 84.41
w/o BatchNorm 83.52 83.84

SimCSE
w/ BatchNorm 82.22 84.36
w/o BatchNorm 81.47 83.61

Table 4: Performance comparison of models with and
without Batch Normalization.

Function STS-B Avg. transfer
KL 84.08 84.12
Sym KL 84.21 84.33
JS KL 84.55 84.41

Table 5: Different distance measuring function perfor-
mance

Therefore, we took experiment to analyze the ef-
fect of different distance measuring functions. As
shown on the table 5, we can observe that including
symmetric property while measuring distance be-
tween two distribution improve the STS-B and Avg.

λ 0 1e−6 5e−5 1e−5

STS-B 82.22 84.55 84.10 83.52
λ 5e−5 1e−4 5e−4 1e−3

STS-B 84.36 83.24 84.11 83.46

Table 6: Development set result under different λ

transfer performance. Overall, JS KL obtained best
performance.

Effect of λ In the section 3, we introduced λ to
adjust the effect of virtual adversarial loss. Since
contrastive object is relatively easier task compare
to virtual adversarial task, scale of contrastive loss
is 100 times smaller than the virtual adversarial loss.
Therefore, we used smaller coefficient values to
balance between each other. In the table 6, we used
different set of λ values to find the best performing
λ value. As a result, we found that λ = 1e−6 is
best performing value.

6 Conclusion

In this paper, we presented V-advCSE, a novel
method to improve the robustness of the model by
leveraging virtual adversarial training framework.
Empirical results shows that V-advCSE not only
improved the generalized performance on STS and
transfer tasks, but also improve the robustness of
the model on ANLI tasks. We also conducted ex-
tensive ablation studies considering effect of Batch
Normalization, different distance measuring func-
tion, and λ values. Our work can be further ex-
tended on supervised task in the future.
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A Appendix

In this section, we provide derivation of radv in
L2 and L∞ case using linearity assumption of the
model. With this assumption, we can apply first or-
der approximation of Taylor series to obtain linear
approximation of loss function.

A.1 L2 Norm derivation
Both attacks used in adversarial and virtual adver-
sarial learning framework can be formalized as
maximum loss attack, where we want to find the
perturbation r that maximizes loss within radius
ϵ. To derive the maximum loss attack using the ℓ2
norm, we need to solve the following optimization
problem:

max
∥r∥2≤ϵ

ℓ(hθ(x+ r), y)

where r is the perturbation we want to find, ϵ is
the radius of the ℓ2 norm ball, ℓ is the loss function,
hθ is the model, and (x, y) is the input-label pair.

For small perturbations, the loss function
ℓ(hθ(x + r), y) can be approximated linearly
around x using first order taylor serise:

ℓ(hθ(x+ r), y) ≈ ℓ(hθ(x), y)+∇xℓ(hθ(x), y)
T r

Here, ∇xℓ(hθ(x), y) is the gradient of the loss
function with respect to the input x.

The optimization problem then becomes:

max
∥r∥2≤ϵ

∇xℓ(hθ(x), y)
T r

Using the Cauchy-Schwarz inequality, we know
that:

∇xℓ(hθ(x), y)
T r ≤ ∥∇xℓ(hθ(x), y)∥2∥r∥2

Given the constraint ∥r∥2 ≤ ϵ, it give us upper
bound:

∇xℓ(hθ(x), y)
T r ≤ ϵ∥∇xℓ(hθ(x), y)∥2

We can find r that satisfies upper bound as fol-
lows: We first multiply each side by∇xℓ(hθ(x), y)
to make it as constant value, so we can move it
between inequality.

∇xℓ(hθ(x), y)
T r∇xℓ(hθ(x), y) ≤ ϵ∥∇xℓ(hθ(x), y)∥2∇xℓ(hθ(x), y)

(15)
Now, we can divide each side by
∥∇xℓ(hθ(x), y)∥22.

r ≤ ϵ
∇xℓ(hθ(x), y)

∥∇xℓ(hθ(x), y)∥2

The maximum value of ∇xℓ(hθ(x), y)
T r is

achieved when r is aligned with the gradient
∇xℓ(hθ(x), y):

r∗ = ϵ
∇xℓ(hθ(x), y)

∥∇xℓ(hθ(x), y)∥2

A.2 L∞ Norm derivation
To derive the maximum loss attack using the ℓ∞
norm, we need to solve the following optimization
problem:

max
∥r∥∞≤ϵ

ℓ(hθ(x+ r), y)

By applying first order Taylor series, we can
again obtain linear approximation of loss function,
thus the optimization problem then becomes:

max
∥r∥∞≤ϵ

∇xℓ(hθ(x), y)
T r

Using Hölder’s inequality, we know that:

∇xℓ(hθ(x), y)
T r ≤ ∥∇xℓ(hθ(x), y)∥1∥r∥∞

Given the constraint ∥r∥∞ ≤ ϵ, it gives us an
upper bound:

∇xℓ(hθ(x), y)
T r ≤ ϵ∥∇xℓ(hθ(x), y)∥1

We can find r that satisfies the upper bound from
the objective function. If we want to maximize
the ∇xℓ(hθ(x), y)

T r, then there would be two dif-
ferent cases. In order to maximize the objective
function, we must satisfy ∥r∥∞ = |ϵ| by given
constraint. Therefore, if the (∇xℓ(hθ(x), y)) is
negative, we need to have r = −ϵ, and r = ϵ
for positive (∇xℓ(hθ(x), y)). As a result, we can
conclude that r achieves max loss as follows:

r∗ = ϵ · sign(∇xℓ(hθ(x), y))



We can verify by plugging back to the upper
bound.

∇xℓ(hθ(x), y)
T ϵ·sign(∇xℓ(hθ(x), y)) ≤ ϵ∥∇xℓ(hθ(x), y)∥1

Expanding the left side:

ϵ∇xℓ(hθ(x), y)
T sign(∇xℓ(hθ(x), y)) = ϵ

∑
i

∇xℓ(hθ(x), y)i·sign(∇xℓ(hθ(x), y)i)

Since sign(∇xℓ(hθ(x), y)i) is 1 for positive el-
ements and −1 for negative elements:

ϵ
∑
i

|∇xℓ(hθ(x), y)i| = ϵ∥∇xℓ(hθ(x), y)∥1

Thus, we can achive upper bound when using
r∗:

ϵ∥∇xℓ(hθ(x), y)∥1 ≤ ϵ∥∇xℓ(hθ(x), y)∥1


