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Abstract

Distribution matching (DM) is a fundamental tool
in trustworthy machine learning (TML), with appli-
cations in fairness, calibration, and domain adap-
tation. While prior work advances individual DM
methods based on information-theoretic and geo-
metric divergences, a unified comparative frame-
work remains lacking. We propose a framework in-
tegrating DM methods, metrics, and TML tasks to
enable systematic comparisons. To our knowledge,
this is the first work to compare latent spaces in
TML while addressing scaling inconsistencies via
ZCA whitening. We empirically evaluate MMD,
Sinkhorn, adversarial, and VAE-based DM meth-
ods across fairness, calibration, and domain adap-
tation. Our findings reveal: (1) accuracy and ex-
pected calibration error (ECE) are positively cor-
related in low-accuracy models but negatively cor-
related in high-accuracy models, extending prior
results Tao et al. [2023a]; (2) logit-based fairness
methods outperform latent-based approaches; and
(3) strict DM enforcement can reduce target ac-
curacy in domain adaptation, and show how to
achieve optimal solution based on information the-
oretic lower bound based on Zhao et al. [2019b].
These insights inform the selection and refinement
of DM algorithms for TML applications.

1 INTRODUCTION

Domain-invariant representation learning (DIRL) Zhao et al.
[2019a, 2022] aims to learn a representation function gθ :
X → Z, which map data from different domains into a
shared latent space where their distributions align, enabling
models to focus on task-relevant features while ignoring
domain-specific variation as shown in Figure 1. Unlike rep-
resentation learning for classification which seeeks to maxi-

mize the divergence between class distributions, DIRL seeks
to minimize the divergence between the domain distribu-
tion. Hence, DIRL can be seen as the natural complement
to classification by defining what is not important, while
classification defines what is important. This approach is
foundational to many trustworthy machine learning (TML)
tasks, such as fair classification (invariance to sensitive at-
tributes), domain adaptation (aligning source and target envi-
ronments), and uncertainty calibration (matching prediction
confidence across subgroups). By minimizing distributional
divergence in the latent space, DIRL addresses the pervasive
challenge of distribution shift, which violates the standard
independent and identically distributed (IID) assumption
and undermines model reliability in real-world applications.

Prior work on distribution matching has primarily been
developed within specific TML tasks, often focusing on
individual approaches rather than a comparative or uni-
fied framework Han et al. [2023b], Reddy [2022b], Tao
et al. [2023b], Gulrajani and Lopez-Paz [2020], Marx et al.
[2024b]. For instance, in uncertainty calibration Marx et al.
[2024b], DM has been explored using kernel-based ap-
proaches such as Maximum Mean Discrepancy (MMD) to
align predicted and true confidence distributions. In contrast,
domain adaptation methods typically rely on adversarial
learning, where generative adversarial networks (GANs) or
domain classifiers enforce domain-invariant representations
Ganin et al. [2016b]. In fairness, logit-based methods en-
force fairness by directly constraining output distributions
Chung et al. [2024a], while latent space-based methods
align intermediate feature distributions Madras et al. [2018].
Despite the diversity of DM techniques, they are often de-
veloped in isolation, without a comprehensive comparison
across TML applications. Consequently, there is limited un-
derstanding of which DM methods generalize best across
tasks or how different alignment techniques trade off be-
tween computational efficiency, stability, and effectiveness.

To bridge this gap, we propose a unified framework for sys-
tematically comparing DM methods across multiple TML
tasks. Our framework integrates representative DM methods
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Figure 1: Distribution matching (DM) aims to map two or more distributions to the same distribution. The most general
form is (unpaired) domain-invariant representation learning (left) where the algorithm only has access to samples from each
domain but can project them into a (lower-dimensional) latent space. Unsupervised domain translation is a special case
in which one distribution is the source and one is the target, which does not change. Finally, an even more special case is
generative models which maps from a known distribution (usually Gaussian) to the data distribution. Importance weighting
is another technique for DM but is not considered in this work because most trustworthy ML applications require a new
representation rather than sample weights.

including Maximum Mean Discrepancy (MMD) Gretton
et al. [2012], Sinkhorn divergence Feydy et al. [2019a],
adversarial domain alignment Ganin et al. [2016b], and
VAE-based methods Gong et al. [2024], and evaluates their
performance on three major TML tasks: fairness, calibration,
and domain adaptation. Unlike prior work that considers
DM in isolation for a single task, our framework enables
direct comparison across these tasks, providing insights into
the relationship between intrinsic metric (MMD, Sinkhorn)
with task specific metric (ECE Guo et al. [2017b], DP Han
et al. [2023b]). Additionally, we introduce a normalized
divergence metric to control for latent space scaling, en-
suring fair evaluation DM methods using non-parametric
geometric divergences that can be computed directly from
samples.

Our empirical results reveal key trends in DM effectiveness
across tasks and expose limitations in current methods that
future research must address. First, a recent study on calibra-
tion revealed a negative correlation between accuracy and
the expected calibration error (ECE) in strong predictive
models, while our study extends these findings by show-
ing a positive correlation between accuracy and ECE in
low-accuracy models. Moreover, strong distribution match-
ing can improve accuracy but may induce overconfidence,
thereby highlighting the importance of post-hoc adjustments.
Second, current research on fairness mostly focuses on rep-
resentation learning methods (i.e., latent-based), but we
find that logit-based methods outperform latent-based ones.

Lastly, our empirical findings contradict widely used theo-
retical bounds based on theH-divergence Ben-David et al.
[2006b], which suggest that there should be a gap between
the source and target distributions in order to achieve the
best performance. In order to minimize the target domain
error, we leveraged the information-theoretic lower bound
proposed in Zhao et al. [2019b] to compensate for the bi-
ased label distribution gap between domains by properly
adjusting the latent distribution distance. Through this study,
we aim to guide the selection of DM techniques for TML
applications and inspire the development of more robust,
generalizable DM algorithms. Our contributions can be sum-
marized as follows:

1. We formalize a common theoretical framework that
integrates DIRL and DM methods under a single um-
brella, enabling systematic comparisons.

2. We provide theoretical connection between DM meth-
ods with information theocratic divergence Pardo and
Vajda [2003] and geometric divergence Amari [2009]
to provide strength and weakness of each DM methods
(Section 2).

3. Using the unified DM framework, we evaluate differ-
ent DM methods across fairness, domain adaptation,
and calibration tasks, highlighting their connection be-
tween intrinsic metric (MMD, Sinkhorn) and task spe-
cific metric (DP, ECE), and provide insightful guideline
for practical usage (Section 5).



2 UNIFIED FRAMEWORK FOR
DISTRIBUTION MATCHING AND
TRUSTWORTHY ML TASKS.

Notation. Let x ∈ X, y ∈ Y, and d ∈ {1, 2, . . . , k}
denote random variables corresponding to the input, tar-
get (optional), and domain label, respectively. Let z :=
gθ(x, y, d, ϵ) ∼ pθ(z|y,x, d) denote the latent representa-
tion of x, and for logit based method, we denote q̂ :=
gθ(x, y, d, ϵ) ∼ pθ(q̂|y,x, d) where gθ is called the matcher
with parameters θ that may optionally depend on the target
variable y, the domain d, and exogenous noise ϵ to encom-
pass stochastic aligners. If g does not depend on d and/or ϵ
we will suppress notation w.r.t. these random variables for
notational simplicity. Let pdata(x, y, d) denote the true data
distribution. Let ϕ denote parameters of variational models
or distributions, e.g., qϕ(x, y, d) will denote a variational dis-
tribution and hϕ(z) will denote a variational discriminator
for adversarial learning. Let ψ denote application-specific
parameters, e.g., ŷ := fψ(z) will denote the predicted class
based on the given classifier head in fair classification. En-
tropy, cross entropy, and mutual information will be denoted
by H(x) and Hc(x, z), and I(x, z), respectively. Let D(p, q)
denote a distribution divergence between p and q, e.g., DKL,
DJSD, and DWρ will denote KL, JSD, and Wasserstein-ρ
divergences, respectively. Similarly, let D̂, D, and D denote
an approximation, an upper bound, or a lower bound of a
divergence respectively. Because DM involves mininizing
a divergence w.r.t. the matcher parameters θ, we will let
D(θ) := D(pθ(z|d=1), pθ(z|d=2)) with slight abuse of
notation.

Distribution Matching Problem. The distribution match-
ing problems we consider can be formulated as a task-
specific objective plus a distribution matching constraint
on the matched representation.

Definition 1. (Distribution Matching Problem). A dis-
tribution matching problem minimizes a task objective
Ltask(f̃ψ, g̃θ), where f̃ψ is a task-specific model and g̃θ
is the matcher model, subject to a DM constraint on the
matched representation z̃ := g̃θ(x, y, d, ϵ):

min
ψ,θ

Ltask(f̃ψ, g̃θ) s.t. D(pθ(z̃|d=1), pθ(z̃|d=2)) ≤ δ

(1)

where D(·, ·) is a distribution divergence and δ is the DM
slackness hyperparameter.

In practice, minimizing a distribution divergence is challeng-
ing given only samples. Most approaches use tractable and
differentiable approximations to well-known divergences.
We will first explain common loss functions that aim to solve
trustworthy ML tasks and then review the main approaches
to minimizing a distribution divergence.

2.1 UNIFIED FORMALIZATION OF
TRUSTWORTHY ML TASKS AS
DISTRIBUTION MATCHING

Many trustworthy ML tasks can be formulated as DM prob-
lems. In some cases, DM is fundamental to the trustworthy
ML task (e.g., fairness or calibration), while in others, DM
is one approach to the task (e.g., domain adaptation). For the
tasks where DM is fundamental, the key question is: What is
the empirically achievable Pareto frontier between the task
objective and the DM constraint (e.g., fairness-accuracy
tradeoff)? For the tasks where DM is an approach, the key
question is: Is DM performance correlated with the relevant
task performance (e.g., does better DM yield better domain
adaptation performance)? In particular, we would like to
disentangle the effect of the DM algorithm—which may be
far from optimal—from the task performance. We conjec-
ture that in some cases, the DM algorithm fails to achieve
the DM objective even though the task objective may be
reasonable.

Group Fair ML as Distribution Matching The goal of
fair learning is to be as accurate as possible while satisfying
a fairness constraint. Demographic parity (DP) (also known
as statistical parity) is one common notion of group fairness
that is satisfied if and only if p(ŷ = 1|d=1) = pθ(ŷ = 1|d=
2), i.e., these two distributions match. Fair classification
seeks to directly learn predictions that are fair. Fair represen-
tation learning seeks to learn a representation such that all
downstream tasks will be fair. We unify fair learning under
our DM framework and notation below.

Proposition 1. Fair learning Madras et al. [2018], Song
et al. [2019b] w.r.t. DP is a DM problem (1) with
g̃θ(x, y, d, ϵ) = gθ(x, ϵ) and Ltask = E[ℓ(fψ(gθ(x, ϵ)), y)]
for fair classification and Ltask = −I(x, z = gθ(x, ϵ)|d)
for fair representation learning.

In practice, both the classification and mutual information
task objectives are often combined (e.g., [Madras et al.,
2018, Gong et al., 2024] approximate mutual information
via a VAE objective).

Calibration as DM Problem Canonical calibration Vaice-
navicius et al. [2019b] means that the predicted probabilities
for all classes match the true probabilities:

p(y = y|q̂) = p(ŷ = y|q̂) := qy, ∀y ∈ Y, q̂ ∈ ∆|Y|

(2)

where q̂ := gθ(x) is the predicted class probabilities for k
classes and ∆|Y| denotes the probability simplex. This cali-
bration condition is a type of conditional distribution match-
ing problem, i.e., match the marginal distribution of pre-
dictions to the true distribution conditioned on the model’s
output q. In this case, the domain label is whether it is the



real target variable or the predicted target variable. Marx
et al. [2023] showed that indeed many types of calibration
including regression, classification, and decision calibration
can be framed as conditional distribution matching problems.
In fact, because the marginal distribution of the conditioning
variables is the same regardless of the domain, the problem
can be equivalently written as a unconditional DM problem.
We now unify the results from Marx et al. [2023] using our
framework below.

Proposition 2. Calibration during training is DM Marx
et al. [2023] Letting ŷ′, y′, and c denote the forecast, tar-
get, and conditioning variables from Marx et al. [2023,
Tables 1 and 2], respectively, where ŷ′ and y′ are functions
of ŷ and y,1 calibration during training is a DM problem
(1) with g̃θ(x, y, d, ϵ) = (ỹ′, gθ(x, ϵ)), where ỹ′ = 1(d=
1)ŷ′ + 1(d=2)y′ selects between the forecasted and target
variables, c = gθ(x, ϵ) represents the conditioning vari-
able, and Ltask = E[ℓ(gθ(x, ϵ), y)] is the standard negative
log-likelihood ERM objective.

Domain Adaptation via Domain-Invariant Features In-
spired by the bounds on domain adaptation generalization
in Ben-David et al. [2006a], many domain adaptation pa-
pers aim to learn domain-invariant features, i.e., latent fea-
tures whose distribution is independent of the domain labels.
Specifically, Ben-David et al. [2006a] showed that the risk
on the target domain could be bounded by the risk on the
source domain plus the divergence between the feature dis-
tributions and a constant. A natural approach is to reduce
the divergence between the feature distributions, i.e., distri-
bution matching. Thus, domain-invariant domain adaptation
can be unified under our framework.

Proposition 3 (Domain-invariant domain adaptation is
DM). Domain-invariant domain adaptation is a DM prob-
lem (1) with g̃θ(x, y, d, ϵ) = gθ(x, ϵ) and Ltask =
E[ℓ(fψ(gθ(x, ϵ)), y)] is the standard ERM objective where
fψ is the classification head on top of the domain-invariant
representation z = gθ(x, ϵ).

2.2 UNIFIED TRAINING OBJECTIVES FOR
DISTRIBUTION MATCHING

2.2.1 Comparison between Information-Theoretic
Divergence vs Geometric Divergence

We broadly categorize differentiable divergences into
information-theoretic and geometric. Information-theoretic
divergences Amari and Cichocki [2010] are usually es-
timated using a variational approximation. Information-
theoretic divergences have the elegant property of being

1Note that in many cases, ŷ′ = ŷ and similarly y′ = y, but
there are some cases from Marx et al. [2023] such as quantile
calibration for regression or top-label calibration for classification
that require using either the predicted CDF or indicator functions
of ŷ and y.

invariant under invertible transformations [Qiao and Mine-
matsu, 2008] and thus are very useful when operating in
latent spaces where the scale is irrelevant. Moreover, it
can be computed with O(N) for discrete measure Séjourné
et al. [2023]. The drawbacks are information-theoretic di-
vergences usually require learning an auxiliary variational
model, which may be challenging itself and it is sensitive to
support mismatch Séjourné et al. [2023]. Geometric diver-
gences on the other hand use distances between points in the
space and thus vary with scale Amari [2009]. This makes
it more challenging to apply geometric-based divergences
in latent space as simple scaling transformations drastically
change these divergence measures. However, the two most
common geometric divergences, Wasserstein and MMD,
can be non-parametrically approximated using only a batch
of samples from both domains without the need to train an
auxiliary model. Also, geometric divergence metrize weak*
topology that is αn ⇀ α⇔ L(αn, α)→ 0, which implies
that a lower loss corresponds to closer distribution matching
Feydy et al. [2019b].

2.2.2 Information Theoretic Divergences via
Parametric Variational Bounds

Most differentiable approximations to information-theoretic
divergences are bounds that involve training a variational
model hϕ, such that the bound is tight if optimized perfectly
but otherwise remains a bound. Adversarial GAN-based
approaches form a variational lower bound on a divergence.
The standard GAN-based loss bounds the JS divergence and
trains a classifier with cross entropy loss ℓCE to predict the
domain label:

DADV(θ) := max
ϕ

Ep[−ℓCE(hϕ ◦ gθ(x), d)] ≤ DJSD(θ) .

(3)

Adversarial objectives for all f -divergences Sason and
Verdú [2016] and even Wasserstein distance Panaretos and
Zemel [2019] (a geometric divergence) can be formulated.
Notice that the DM problem involves minimizing this ap-
proximation and thus it forms a min-max, i.e., adversarial
problem, hence the name.

In contrast to adversarial lower bounds, there have been mul-
tiple approaches to form variational upper bounds. One of
the more common bounds is based on a variational autoen-
coder (VAE) structure. Recently, [Gong et al., 2024] gener-
alized previous VAE-based approaches into a self-contained
loss similar to the adversarial loss above that upper bounds
the JSD:

DVAUB(θ) := min
ϕ

Ep
[
− log

(qϕ(x|z, d)
pθ(z|x, d)

· qϕ(z)
)]

+ C

(4)

≥ DJSD(θ) , (5)



where gθ(x; d, ϵ) is a stochastic encoder using the repa-
rameterization trick where ϵ ∼ N (0, I), qϕ(x, z|d) :=
qϕ(z)qϕ(x|z, d) is a decoder distribution where qϕ(z) is
a learnable prior distribution, and C is a constant that is
independent of θ and ϕ. If qϕ is minimized perfectly includ-
ing the learnable prior distribution, then the bound becomes
equal to the JS divergence. Note that this has a similar form
to the adversarial approach except that it is a min problem
and thus forms a min-min problem. A flow-based variant
[Cho et al., 2022] provides an upper bound that only depends
on optimizing the prior.

2.2.3 Non-Parametric Geometric Divergences

Geometric divergences (e.g., Wasserstein, Sinkhorn or
MMD) vary with invertible transformations of the space.
Intuitively, they depend on the distances in the space rather
than ratios of densities as in information-theoretic diver-
gences. One natural approach is to compute the distance be-
tween the domain distribution means. However, the means
having a distance of zero is only necessary but not sufficient
condition for the distributions to be equal. The maximum
mean discrepancy (MMD) finds a function of random vari-
ables that maximizes the expectation between the domain
distributions. While the function class could be a set of neu-
ral networks as in MMD-GAN Li et al. [2017], the most
commonly used class of functions is a reproducing kernel
hilbert space (RKHS) Gretton et al. [2012]. The MMD can
be solved exactly when comparing empirical distributions,
i.e., batches of samples from each domain. Thus, this em-
pirical MMD can be used as a plug-in estimator of the
distribution-level MMD:

D2
MMD(θ) ≈ D̂2

MMD(θ)
: = ∥µ̂1 − µ̂2∥2H (6)

= Ê[K(z1, z1)]− 2Ê[K(z1, z2)] + Ê[K(z2, z2)] , (7)

where H is an RKHS with kernel K, µ̂1 and µ̂2 are the
empirical (sample-based) means of domain 1 and 2 respec-
tively in H, and the expectations are based on unbiased
sample averages [Gretton et al., 2012]. This can be seen as
a generalization of comparing the empirical mean of the
two distributions but using the implicit infinite dimensional
space of a RKHS. One of the challenges is that this scales
quadratically in the number of samples in the batch and thus
cannot be computed for very large batches. Additionally,
the performance can be sensitive to the kernel bandwidth
parameter, which can be non-trivial to select in practice.

Another geometric divergence is based on Wasserstein dis-
tance. The Wasserstein-1 distance Panaretos and Zemel
[2019] is defined optimal transport cost between the domain
distributions using the the cost function c(x,y) = ∥x−y∥2.
The Wasserstein-1 between two empirical distributions (i.e.,
samples) can be computed by solving a linear program.
Recently, linear program neural network layers have been
proposed, which could be used to approximate it Mazouz

et al. [2022]. However, solving a linear program for every
batch of training samples is likely too expensive. In prac-
tice, an approximation to the Wasserstein distance based on
an entropy-regularized optimal transport problem is often
used. For this approximation, the Sinkhorn algorithm Cuturi
[2013], which only requires matrix-vector multiplications,
is often used since it has a complexity of O(m2Niter) where
m is the dimensionality and Niter is the max number of
Sinkhorn iterations. This approximation can be written as a
regularized optimization problem Cuturi [2013]:

D̂SINK(θ) :=
(
Eπ̂λ

[
c(z1, z2)

]
s.t. π̂λ := argmin

π̂∈Π
Eπ̂

[
∥z1 − z2∥2

]
+ λH(π̂)

)λ→0

≈ DW1
(8)

where π̂λ := argminπ̂∈Π Eπ̂[∥z1 − z2∥2] + λH(π̂) and
where π̂(z1, z2) ∈ Π is the empirical coupling distribution
between samples from each domain, Π corresponds to the
set of joint discrete probability distributions over z1 and z2
whose marginals are pθ(z|d=1) and pθ(z|d=2), respectively,

and
λ→0
≈ means that it approaches the true Wasserstein-1

distance as λ goes to zero. Note that this has two approxima-
tions. First, it compares a batch samples from each domain
rather than the population-level distributions. Second, if
λ > 0, then it forms an approximation to the Wasserstein-1
distance. While the Sinkhorn algorithm improves the com-
putational complexity significantly, the algorithm is still at
least quadratic in the number of samples in the batch and
thus, like MMD, is difficult to apply for a large number of
samples.

Previously mentioned geometric divergences have some
problem, first MMD suffers from flat geometry, which even-
tually result into vanishing gradient Feydy et al. [2019b].
Also, vanilla OT causes dimension collapse on source map-
ping due to D̂SINK(z1, z1) ̸= 0 by entropic regularization,
thus it will introduce bias solution. Therefore, Sinkhorn di-
vergence addresses above problem by interpolating between
MMD and Sinkhorn with additional auto correlation term
to prevent bias.

D̂SINKD(θ)
def.
= D̂SINK(z1, z2)−

1

2
D̂SINK(z1, z1)

− 1

2
D̂SINK(z2, z2) (9)

D̂W1

ε→0←−−− D̂SINKD(θ)
ε→+∞−−−−−→ D̂2

MMD(θ) (10)

3 NORMALIZED GEOMETRIC
DIVERGENCES FOR EVALUATING DM
METHODS

One of the key challenges with comparing DM methods is
properly evaluating how well the DM constraint was satis-
fied. Ideally, we would measure the divergence of the latent



domain distributions. However, even estimating distribution
divergences is known to be a challenging problem in its own
right. While the adversarial and VAE-based methods could
provide bounds on information theoretic divergences, they
would require training an auxiliary model at test time to
evaluate each method. Thus, we focus on the non- paramet-
ric divergences MMD and Sinkhorn that can be estimated
with only samples. However, there is one key challenge
with these geometric divergences when comparing across
diverse methods. The scale of the latent distribution can sig-
nificantly affect the absolute MMD or Sinkhorn divergence
estimate because geometric divergences are highly sensitive
to scale. This is a problem if the latent space is learned
since the latent space scale is arbitrary. Thus, comparing
methods using MMD or Sinkhorn directly would be unfair.
To overcome this, we propose a simple approach based on
applying ZCA whitening of the latent space before measur-
ing the divergence. This ensures that the scale of the latent
distributions is removed

4 RELATED WORK

Calibration Even though many deep learning models
achieve high predictive performance, they often produce
unreliable predictions due to a lack of calibration. Most
deep learning models tend to be overconfident, as indicated
by spiking posterior distributions Guo et al. [2017a]. Several
factors contribute to this issue, including over-parameterized
networks, insufficient regularization, limited data, and im-
balanced label distributions Guo et al. [2017a]. There has
been extensive research on calibration in both classification
Bröcker [2009], Kull et al. [2017], Naeini et al. [2015b],
Platt et al. [1999b], Dwork et al. [2021], Hébert-Johnson
et al. [2018], Pleiss et al. [2017] and regression tasks Ziegel
and Gneiting [2014], Kuleshov et al. [2018], Gneiting and
Ranjan [2013], Song et al. [2019a], Zhao et al. [2020]. How-
ever, much of the community’s focus has been on binary
classification settings Karandikar et al. [2021], Vaicenavi-
cius et al. [2019a], Bohdal et al. [2021], Platt et al. [1999a],
Guo et al. [2017a]. Recently, Marx et al. [2024a] extended
calibration into the distribution matching framework by
leveraging the Maximum Mean Discrepancy (MMD)-based
metric. This work unified recent advances in calibration
across classification and regression tasks Kuleshov et al.
[2018], Sahoo et al. [2021], Gneiting and Ranjan [2013],
Zhao et al. [2021], Pessach and Shmueli [2022], Song et al.
[2019a], Zhao et al. [2020], Luo et al. [2022]. Among the
various calibration methods, our work focuses on individual
calibration Zhao et al. [2020] conditioned on the variable x.

Fairness Fairness in machine learning has garnered sig-
nificant attention from the research community, with the
primary goal of ensuring that machine learning models
do not exhibit bias toward specific groups or individuals.
Fairness algorithms are broadly categorized into two types:

group fairness and individual fairness. Group fairness em-
phasizes equitable treatment across predefined demographic
groups (e.g., male and female), while individual fairness
ensures that similar individuals are treated similarly. To
mitigate bias in machine learning models, researchers have
proposed three primary strategies: preprocessing Creager
et al. [2019], Lu et al. [2020], in-processing Chen and Wu
[2020], Chiu et al. [2024], and post-processing Dwork et al.
[2012], Hardt et al. [2016]. Preprocessing techniques mod-
ify the data before training, such as through normalization,
relabeling, or reweighting. Post-processing methods adjust
model outputs after training, typically at test time. In con-
trast, in-processing approaches impose fairness constraints
during the training phase and have gained significant atten-
tion due to their ability to directly influence model behavior.

Our work focuses on in-processing methods, which are par-
ticularly relevant for enforcing fairness constraints during
training. Prior studies in this area have primarily concen-
trated on specific applications or methods, often restricting
their analysis to either latent space or logit space techniques.
For instance, recent benchmark efforts have predominantly
explored latent space approaches without extending their
analysis to logit space methods Han et al. [2023b]. Addi-
tionally, these works often fail to provide a comprehensive
comparison across different fairness methods or applica-
tions. In contrast, our study systematically evaluates in-
processing methods by leveraging fairness techniques in
both latent and logit spaces. We incorporate distribution-
matching constraints and then evaluate their effectiveness
using both information-theoretic and geometric divergence
metrics. Consequently, we have a more holistic understand-
ing of the trade-offs between different fairness methods. By
addressing these gaps, our work provides a more compre-
hensive benchmark for group fairness methods compared to
existing literature.

Domain Adaptation Domain adaptation seeks to enhance
model generalization on out-of-distribution data. In this
work, we focus on closed-set unsupervised domain adapta-
tion, where the source and target domains share the same
label space, but only the source domain is labeled.

Early methods aligned source and target feature distributions
using statistical losses—for example, integrating a multi-
kernel Maximum Mean Discrepancy (MMD) loss into deep
neural networks Long et al. [2015]. Subsequent works re-
fined these techniques [Long et al., 2017, Bousmalis et al.,
2016] or introduced related MMD variants [?Zellinger et al.,
2017, Kang et al., 2019]. In parallel, adversarial approaches
have gained traction due to its flexibility and effectiveness.
By incorporating a domain discriminator that distinguishes
between source and target features, feature extractors can
be trained to deceive the discriminator, thereby promot-
ing domain-invariant representations [Ajakan et al., 2014,
Ganin and Lempitsky, 2015, Ganin et al., 2016b, Tzeng



et al., 2017]. Although less common, recent studies have
also leveraged Sinkhorn divergences for domain adaptation
[Pandya et al., 2025, Han et al., 2025], offering a promising
alternative that efficiently aligns latent spaces via regular-
ized optimal transport.

Many previous domain adaptation benchmarks evaluate
models with dedicated designs that are intrinsically tied to
specific divergence measures and task formulations [Lalou
et al., 2025, ?]. In contrast, our work introduces a unified
distribution matching framework that employs a generalized
network architecture across all experiments. By keeping the
architecture fixed, we interchange different divergence mea-
sures (e.g., Sinkhorn, adversarial, MMD, and variational
methods) and systematically assess their relationship with
domain adaptation performance under uniform experimental
conditions.

5 EMPIRICAL COMPARISON OF DM
METHODS ACROSS TRUSTWORTHY
ML TASKS

In this section, we focus on answering two major questions
for each task.

RQ 1: What are the relationship between intrinsic met-
ric (MMD, Sinkhorn) and task specific metric (DP
(Fairness), ECE (Calibration), target accuracy (Domain
Adaptation)?

RQ 2: Which DM method should we use for each TML
task?

5.1 EXPERIMENT SETUP

We tuned the hyper parameters using a TPES sampler
Bergstra et al. [2011] to find the best model, and used early
stopping with tracking validation loss. A detailed experi-
ment setup can be found in the appendix. For the calibration
and fairness tasks, we used the ADULT dataset Becker and
Kohavi [1996], considering gender (male and female) as the
sensitive attribute and classifying income > 55k. For the do-
main adaptation task, we used the MNIST → USPS dataset
Deng [2012], Hull [1994]. When evaluating Sinkhorn diver-
gence and MMD, we applied ZCA whitening to the latent
space when using latent space-based methods. However, we
did not apply ZCA whitening Kessy et al. [2018] to the
logit space since it is already a constrained space. We used
the default epsilon (entropic regularization parameter) for
Sinkhorn divergence from the GeomLoss library Feydy et al.
[2019b]. For MMD, ongoing research seeks to determine
the optimal bandwidth, as MMD is highly sensitive to this
parameter. Initially, we applied the most common approach,
median heuristicGarreau et al. [2017], but it did not perform
well. Therefore, we experimented with bandwidth values
of [1, 5, 10, 15, 20, 25] and selected the bandwidth that

resulted in the highest MMD.

5.2 CALIBRATION

We follow an individual calibration approach, as described
in Marx et al. [2024a]. While prior work primarily used the
Maximum Mean Discrepancy (MMD) method, we extended
the study by incorporating both the Sinkhorn divergence
and an adversarial method. Since no prior work has applied
adversarial techniques in this context, we implemented a
GAN-based method designed to match the predicted distri-
bution to the target ground-truth distribution.

For calibration, we applied temperature scaling as a post-hoc
calibration technique Hinton [2015] and used the Expected
Calibration Error (ECE) as our primary evaluation metric
Naeini et al. [2015a].

Definition 2. Expected Calibration Error (ECE) measures
the discrepancy between model confidence and accuracy.

ECE =

M∑
m=1

|Bm|
n
|E [I (ŷ = y) | q̂ ∈ Bm]− E [q̂ | q̂ ∈ Bm]| ,

(11)
where Bm denotes the set of samples in the m-th confidence
bin, |Bm| is the number of samples in bin m, n is the total
number of samples, q̂ is predicted probability (confidence),
and ŷ is predicted label

Research Question 1 (RQ1): What is the relationship
between intrinsic metrics and task-specific metrics?

Observation 1: The Sinkhorn Divergence exhibits a neg-
ative correlation with both ACC and ECE while MMD
exhibits no strong correlation.

To understand the impact of distribution matching (DM) on
calibration, we must examine the definition of ECE. The
goal of DM in calibration is to align the predicted distribu-
tion q with the true distribution p(y|x). However, perfect
distribution matching tends to produce overconfident predic-
tions, resulting in higher accuracy (ACC) but also increased
ECE, as shown in Figure 2. In Figure 2, we observe lower
Sinkhorn (strict DM) value have higher ACC and ECE with
a negative correlation between the Sinkhorn divergence and
accuracy, alongside a negative correlation with ECE.

Interestingly, this trend is less evident with MMD. This
discrepancy can be attributed to the higher entropic regular-
ization factor in MMD, which makes it a noisier estimator
compared to the Sinkhorn divergence.

10.

Observation 2: There is a trade-off between ACC and
ECE.



Method ACC Sink MMD ECE

Calibration (MMD) 0.853 ± 0.0004586 0.324 ± 0.00008116 0.001776 ± 0.00001326 0.07271 ± 0.0004055

Calibration (Sink) 0.853 ± 0.0004072 0.3231 ± 0.0001792 0.001815 ± 0.0001802 0.08282 ± 0.0008516

Calibration (Adv) 0.8509 ± 0.0008675 0.3224 ± 0.0001652 0.00183 ± 0.0001401 0.08994 ± 0.0009532

Table 1: Performance comparison of different calibration methods.

Method ACC Sink MMD ECE

Post Hoc Calibration (MMD) 0.853 ± 0.0004586 0.3473 ± 0.000075 0.002384 ± 0.00001373 0.08139 ± 0.0003872

Post Hoc Calibration (Sink) 0.853 ± 0.0004072 0.3492 ± 0.0001482 0.002494 ± 0.00001943 0.04953 ± 0.003339

Post Hoc Calibration (Adv) 0.8509 ± 0.0008675 0.3501 ± 0.0002244 0.002541 ± 0.00001443 0.04865 ± 0.001214

Table 2: Performance comparison of post hoc calibration methods.

Figure 2: Relation between Sinkhorn Divergence and MMD
with Accuracy and ECE on Calibration

Extensive research in fairness has investigated trade off
between Demographic Parity (DP) with ACC Han et al.
[2023a], Plecko and Bareinboim [2024], Gong et al. [2024].
However, trade off between ACC and ECE haven’t been
thoroughly explored in calibration domain. Recent work
revealed that there is negative correlation between ECE and
ACC on high ACC model Tao et al. [2023a]. We therefore,
further investigated on this topic. As we can observe on
figure 3, initially, as ACC increases, ECE also increases.
However, after reaching a certain point, ACC starts to de-
crease as ECE continues to increase. The reason behind
positive correlation between ACC and ECE is when ACC is
low, predictive confidence is also low, resulting in a small
gap between confidence and accuracy, and as ACC increase,
confidence increase, thus ECE increase as well Si et al.

Figure 3: ACC vs ECE Trade off (Left), Calibrated ACC vs
ECE Trade off (Right) for Calibration

[2022]. However, beyond a certain confidence threshold,
accuracy begins to decline due to overfitting confidence on
incorrect predictions. Therefore, we can observe that ACC
exhibits a positive correlation with ECE in low-accuracy
models and a negative correlation with ECE in high-
accuracy models. Our findings align with the observations
in Tao et al. [2023a], which reported a negative correlation
between ACC and ECE in high-accuracy models. Addition-
ally, our results provide new insight by highlighting that
low-accuracy models tend to display a positive correlation
between ACC and ECE.

Observation 3: Post hoc calibration removes the ACC
and ECE trade off. Ideally, Temperature Scaling should
reduce ECE without effecting ACC, thus remove the ACC
and ECE trade off Guo et al. [2017b]. Our result also follow
this conjecture. As shown on figure 3, we can observe that
equal ACC model exhibits different ECE, thus removed
trade off.

RQ 2: Which DM method should we use for Calibration
task?

We hypothesize that due to the strong correlation between
Sinkhorn and both ACC and ECE as shown on figure 2,
Sinkhorn tends to overfit, ultimately leading to an increase



in ECE compared to MMD before post hoc calibration. How-
ever, applying post-hoc calibration significantly reduces
ECE for both Sinkhorn and adversarial methods, while ECE
increases for MMD. This phenomenon can be explained by
a strongly regularized calibration method during training
compresses logit distributions and removes sample diffi-
culty information, thereby limiting the potential improve-
ment achievable through post-hoc calibration Wang et al.
[2021]. Therefore, several studies recommend using both
training-time and post-hoc calibration as a unified frame-
work rather than relying solely on individual methods. In
conclusion, we recommend practitioner to use Sinkhorn
method with post hoc calibration.

6 FAIRNESS

Most fairness benchmark papers Han et al. [2023a], ?],
Reddy [2022a] focus on fair representation learning, which
we refer to as latent-based methods. However, there is a
lack of prior work studying logit-based approaches Chung
et al. [2024b]. In this paper, we compare distribution match-
ing using both logit-based and latent-based methods using
Sinkhorn, MMD, adversarial, and VAUB. However, VAUB
is latent based method, so we did not compare VAUB with
logit base method Gong et al. [2024]. Interestingly, defi-
nition of fairness metric "demographic parity" is closely
related to distribution matching that strong DM will result
into lower DP. Therefore, in this section, we are going to
show how DM help fairness task.

Definition 3. Demographic Parity measures discrepancy
of true positive rate between different domain.

|p(ŷ = 1|d = 1)− pθ(ŷ = 1|d = 2)| (12)

Throughout the experiment, we use ratio instead of absolute
difference following Torchmetric implementation

mind p (ŷ = 1 | d)
maxd p (ŷ = 1 | d)

. (13)

RQ 1: What are the relationship between intrinsic metric
and task specific metric?

Observation: For logit based method, both Sinkhorn
divergence and MMD exhibits a negative correlation
with demographic parity (DP) with positive correlation
with ACC while no strong correlation observe on latent
based method.

For the latent space method, as shown in Figure 4, we ob-
serve that Sinkhorn and MMD do not exhibit a strong corre-
lation with ACC and DP, thus failing to provide a meaningful
trend for latent based method. In contrast, as shown on fig-
ure 5, logit-based methods demonstrate negative correlation
between Sinkhorn and MMD with DP, which indicates that

DM is effective on fairness task. For ACC, we observe pos-
itive correlation between MMD and Sinkhorn. Therefore,
there is inherent trade off between ACC and DP.

Figure 4: Relation etween Sinkhorn Divergence and MMD
with Accuracy and DP for latent based fairness

Figure 5: Relation etween Sinkhorn Divergence and MMD
with Accuracy and DP for logit based fairness

RQ 2: Which DM method should we use for Fairness
task

Notably, most logit-based methods outperform latent-based
methods, yielding higher accuracy and DP, as shown in



Method ACC DP Sink MMD

Fairness Latent based (MMD) 0.8468 ± 0.001215 0.317 ± 0.009764 71.834 ± 3.762 0.004489 ± 0.0000184

Fairness Latent based (Sink) 0.8447 ± 0.0006408 0.4493 ± 0.005768 0.4479 ± 0.1018 0.01706 ± 0.001062

Fairness Latent based (Adv) 0.847 ± 0.0007036 0.3085 ± 0.01354 50.456 ± 4.761 0.004562 ± 0.0000106

Fairness Latent based (VAUB) 0.8578 ± 0.0008785 0.2968 ± 0.01286 56.066 ± 1.631 0.00475 ± 0.00002788

Table 3: Fairness latent based methods performance comparison.

Method ACC DP Sink MMD

Fairness Logit based (MMD) 0.8489 ± 0.001146 0.3457 ± 0.00962 0.06427 ± 0.001746 0.02389 ± 0.0006595

Fairness Logit based (Sink) 0.8187 ± 0.001124 0.9181 ± 0.01749 0.001025 ± 0.0000754 0.0003324 ± 0.00002196

Fairness Logit based (Adv) 0.852 ± 0.0004109 0.306 ± 0.005739 0.06563 ± 0.00173 0.02712 ± 0.0007715

Table 4: Fairness Latent based methods performance comparison.

Figure 6: Relation between Sinkhorn Divergence and MMD
with Source Accuracy and Target Accuracy on Domain
Adaptation MNIST→USPS

Tables 3 and 4. This can be explained by the fact that logit-
based methods exhibit a stronger correlation between the
intrinsic metric and the task-specific metric compared to
latent-based methods, as shown in Figures 4 and 5. There-
fore, using logit-based methods is more effective. Interest-
ingly, Sinkhorn achieves almost perfect DP with a trade-off
in accuracy. This is because the Sinkhorn method tends
to overfit to distribution matching, resulting in lower accu-
racy. Therefore, we recommend practitioners use logit-
based methods rather than latent-based methods. Specif-
ically, if fairness is a priority, we suggest using Sinkhorn.
For a well-balanced trade-off between accuracy and DP,
MMD-based method is recommended.

7 DOMAIN ADAPTATION

In this paper, we focus on unsupervised domain adapta-
tion setting where we do not have access to the target
label. Wilson and Cook [2020]. We use Sinkhorn based
method Courty et al. [2014], MMD based method Tzeng
et al. [2014], and adversarial based method. Ganin et al.
[2016a].

RQ 1: What is the relationship between the intrinsic
metric and the task-specific metric?

Observation: Strict DM is not always beneficial for do-
main adaptation.

In domain adaptation, Ben-David et al. [2006b] provides a
useful bound on target error in terms of source error using
the H−divergence, suggesting that a good representation
should have both low source error and lowH−divergence
between source and target distributions. However, comput-
ing the H−divergence in practice is often impractical, so
we instead leverage geometric divergence to measure the
distance between two distributions. Interestingly, our ex-
perimental results contradict the direct implication of the
above theoretical bound, which also has been explored in
Zhao et al. [2019b]. As shown in figure 6, a low geometric
divergence does not necessarily lead to high target accuracy.
Specifically, as geometric divergence increases up to a cer-
tain point, the target accuracy also increases; beyond that
point, the target accuracy begins to decrease while source
accuracy remain consistent during most of the time.

By leveraging motivating empirical result above, we
can explain the information theoretic lower bound on
Zhao et al. [2019b] where source error is εS(h ◦
g) = Ex∼DS

[|h(g(x))− fS(x)|], dJS(DYS ,DYT ) represent
Jensen Shannon divergence (JSD) between marginal label
distribution, and dJS(DZS ,DZT ) represent JSD between latent
distribution.

Theorem 1. Suppose the condition in Lemma 4.8 holds



Method ACC (Source) ACC (Target) Sink MMD

Domain Adaptation (MMD) 0.9439 ± 0.005122 0.6784 ± 0.02159 312.998 ± 16.392 0.07625 ± 0.001505

Domain Adaptation (Sink) 0.9736 ± 0.0009812 0.8494 ± 0.004516 617.789 ± 7.445 0.0299 ± 0.0015

Domain Adaptation (Adv) 0.9714 ± 0.001038 0.6511 ± 0.02468 419.11 ± 30.62 0.1147 ± 0.008344

Domain Adaptation (VAUB) 0.9681 ± 0.001431 0.5793 ± 0.01856 512.636 ± 4.163 0.06615 ± 0.002131

Table 5: Comparison of Domain Adaptation methods based on ACC (Source and Target), Sink, and MMD metrics.

in Zhao et al. [2019b] and dJS(DYS ,DYT ) ≥ dJS(DZS ,DZT ),
then:

εS(h◦g)+εT (h◦g) ≥
1

2

(
dJS(DYS ,DYT )− dJS(DZS ,DZT )

)2
.

We can treat εS(h ◦ g) and dJS(DYS ,DYT ) as constants be-
cause they remain fixed while dJS(DZS ,DZT ) varies. Since
dJS(DYS ,DYT ) is non-negative, we can minimize the target
error by making dJS(DZS ,DZT ) close to dJS(DYS ,DYT ). This
trend can also be observed in Figure 6. The target accu-
racy increases up to a certain point and reaches max accu-
racy, which implies that at peak target accuracy we have
dJS(DZS ,DZT ) = dJS(DYS ,DYT ), as this choice minimizes the
target error.

One downside of this theorem is that it does not ex-
plain the performance drop once dJS(DZS ,DZT ) exceeds
dJS(DYS ,DYT ), because Theorem 1 requires dJS(DYS ,DYT ) ≥
dJS(DZS ,DZT ). Nevertheless, it still provides meaningful in-
sight that we can achieve optimal target accuracy by con-
trolling dJS(DZS ,DZT ) via varying the regularization weight
on distribution divergence, as discussed in Definition 1.

RQ 2: Which DM method should we use for domain
adaptation tasks?

As shown in figure 6, Sinkhorn exhibits a stronger correla-
tion with both target ACC and source ACC, indicating that
Sinkhorn is an effective DM metric. Moreover, as presented
in table 5, Sinkhorn achieves both the highest source ACC
and the highest target ACC, with a significant margin of
roughly 20% over the other methods. Therefore, we recom-
mend that practitioners leverage the Sinkhorn method
for domain adaptation tasks.

8 CONCLUSION

This study explores the application of distribution matching
(DM) to three TML tasks: calibration, fairness, and do-
main adaptation. Through extensive experiments, we show
how intrinsic metrics relate to task-specific metrics in each
TML task. Our findings reveal a strong correlation between
Sinkhorn and various task-specific metrics, indicating that
Sinkhorn is an effective DM regularizer. This trend also
leads to better performance across these TML tasks, making
Sinkhorn an appealing “go-to” approach for DM. Addition-
ally, our results provide meaningful insights, which build

interesting connection between previous work. For instance,
recent work on calibration revealed that strong ACC model
exhibits negative correlation between ACC and ECE, and
our results further provide that on weak ACC model, it
exhibits positive correlation. Additionally, prior work on
fairness typically focuses on latent-based (representation
learning) methods, but our experiments demonstrate that
logit-based methods can outperform latent-based methods.
Likewise, previous domain adaptation research relies on the
theoretical bound involving theH−divergence, suggesting
that a closer match between distributions should yield higher
target accuracy. However, our empirical findings show that
strict distribution matching can harm performance for do-
main adaptation. Instead, allowing some gap between the
source and target distributions can improve performance by
leveraging information theoretical lower bound proposed on
Zhao et al. [2019b]. We hope these insights will facilitate
the development of more effective DM methods for a variety
of TML tasks.

References

Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, and Mario Marchand. Domain-adversarial
neural networks. arXiv preprint arXiv:1412.4446, 2014.

Shun-ichi Amari. Divergence, optimization and geome-
try. In International conference on neural information
processing, pages 185–193. Springer, 2009.

Shun-ichi Amari and Andrzej Cichocki. Information ge-
ometry of divergence functions. Bulletin of the polish
academy of sciences. Technical sciences, 58(1):183–195,
2010.

Barry Becker and Ronny Kohavi. Adult. UCI Machine
Learning Repository, 10:C5XW20, 1996.

Shai Ben-David, John Blitzer, Koby Crammer, and
Fernando Pereira. Analysis of representations for
domain adaptation. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems, volume 19. MIT Press,
2006a. URL https://proceedings.neurips.
cc/paper_files/paper/2006/file/
b1b0432ceafb0ce714426e9114852ac7-Paper.
pdf.

https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf


Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing
systems, 19, 2006b.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. Algorithms for hyper-parameter optimization. Ad-
vances in neural information processing systems, 24,
2011.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales.
Meta-calibration: Learning of model calibration using
differentiable expected calibration error. arXiv preprint
arXiv:2106.09613, 2021.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan. Do-
main separation networks. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc., 2016.
URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
45fbc6d3e05ebd93369ce542e8f2322d-Paper.
pdf.

Jochen Bröcker. Reliability, sufficiency, and the decompo-
sition of proper scores. Quarterly Journal of the Royal
Meteorological Society: A journal of the atmospheric sci-
ences, applied meteorology and physical oceanography,
135(643):1512–1519, 2009.

Mingliang Chen and Min Wu. Towards threshold invari-
ant fair classification. In Conference on Uncertainty in
Artificial Intelligence, pages 560–569. PMLR, 2020.

Ching-Hao Chiu, Yu-Jen Chen, Yawen Wu, Yiyu Shi, and
Tsung-Yi Ho. Achieve fairness without demographics
for dermatological disease diagnosis. Medical Image
Analysis, 95:103188, 2024.

Wonwoong Cho, Ziyu Gong, and David I. Inouye. Coopera-
tive distribution alignment via jsd upper bound. In Neural
Information Processing Systems (NeurIPS), dec 2022.

Hao-Wei Chung, Ching-Hao Chiu, Yu-Jen Chen, Yiyu Shi,
and Tsung-Yi Ho. Toward fairness via maximum mean
discrepancy regularization on logits space. arXiv preprint
arXiv:2402.13061, 2024a.

Hao-Wei Chung, Ching-Hao Chiu, Yu-Jen Chen, Yiyu Shi,
and Tsung-Yi Ho. Toward fairness via maximum mean
discrepancy regularization on logits space. arXiv preprint
arXiv:2402.13061, 2024b.

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain
adaptation with regularized optimal transport. In Machine
Learning and Knowledge Discovery in Databases: Eu-
ropean Conference, ECML PKDD 2014, Nancy, France,

September 15-19, 2014. Proceedings, Part I 14, pages
274–289. Springer, 2014.

Elliot Creager, David Madras, Joern-Henrik Jacobsen,
Marissa Weis, Kevin Swersky, Toniann Pitassi, and
Richard Zemel. Flexibly fair representation learn-
ing by disentanglement. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Re-
search, pages 1436–1445. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
creager19a.html.

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26:2292–2300, 2013.

Li Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Rein-
gold, and Richard Zemel. Fairness through awareness.
In Proceedings of the 3rd innovations in theoretical com-
puter science conference, pages 214–226, 2012.

Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N
Rothblum, and Gal Yona. Outcome indistinguishabil-
ity. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1095–1108,
2021.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard,
Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré. In-
terpolating between optimal transport and mmd using
sinkhorn divergences. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
2681–2690. PMLR, 2019a.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard,
Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré. In-
terpolating between optimal transport and mmd using
sinkhorn divergences. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
2681–2690. PMLR, 2019b.

Yaroslav Ganin and Victor Lempitsky. Unsupervised
domain adaptation by backpropagation. In Interna-
tional conference on machine learning, pages 1180–1189.
PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, François Laviolette, Mario
March, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. Journal of machine learning
research, 17(59):1–35, 2016a.

https://proceedings.neurips.cc/paper_files/paper/2016/file/45fbc6d3e05ebd93369ce542e8f2322d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/45fbc6d3e05ebd93369ce542e8f2322d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/45fbc6d3e05ebd93369ce542e8f2322d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/45fbc6d3e05ebd93369ce542e8f2322d-Paper.pdf
https://proceedings.mlr.press/v97/creager19a.html
https://proceedings.mlr.press/v97/creager19a.html


Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The journal of machine
learning research, 17(1):2096–2030, 2016b.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kana-
gawa. Large sample analysis of the median heuristic.
arXiv preprint arXiv:1707.07269, 2017.

Tilmann Gneiting and Roopesh Ranjan. Combining predic-
tive distributions. 2013.

Ziyu Gong, Ben Usman, Han Zhao, and David I. Inouye.
Towards practical non-adversarial distribution matching.
In *International Conference on Artificial Intelligence
and Statistics (AISTATS)*, May 2024.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-
sample test. The Journal of Machine Learning Research,
13(1):723–773, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR, 2017a.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR, 2017b.

Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han
Zhao, Na Zou, and Xia Hu. Ffb: A fair fairness bench-
mark for in-processing group fairness methods. arXiv
preprint arXiv:2306.09468, 2023a.

Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han
Zhao, Na Zou, and Xia Hu. Ffb: A fair fairness bench-
mark for in-processing group fairness methods. arXiv
preprint arXiv:2306.09468, 2023b.

Yan Han, Ailin Hu, Qingqing Huang, Yan Zhang, Zhichao
Lin, and Jinghua Ma. Sinkhorn divergence-based contrast
domain adaptation for remaining useful life prediction
of rolling bearings under multiple operating conditions.
Reliability Engineering & System Safety, 253:110557,
2025.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of
opportunity in supervised learning. In Advances in neural
information processing systems, pages 3315–3323, 2016.

Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and
Guy Rothblum. Multicalibration: Calibration for the
(computationally-identifiable) masses. In International

Conference on Machine Learning, pages 1939–1948.
PMLR, 2018.

Geoffrey Hinton. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2015.

J. J. Hull. A database for handwritten text recognition
research. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550–554, 1994. doi: 10.1109/
34.291440.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-
mann. Contrastive adaptation network for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 4893–4902, 2019.

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lak-
shminarayanan, Jonathon Shlens, Michael C Mozer, and
Becca Roelofs. Soft calibration objectives for neural
networks. Advances in Neural Information Processing
Systems, 34:29768–29779, 2021.

Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Opti-
mal whitening and decorrelation. The American Statisti-
cian, 72(4):309–314, 2018.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon.
Accurate uncertainties for deep learning using calibrated
regression. In International conference on machine learn-
ing, pages 2796–2804. PMLR, 2018.

Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta
calibration: a well-founded and easily implemented im-
provement on logistic calibration for binary classifiers.
In Artificial intelligence and statistics, pages 623–631.
PMLR, 2017.

Yanis Lalou, Théo Gnassounou, Antoine Collas, Antoine
de Mathelin, Oleksii Kachaiev, Ambroise Odonnat,
Alexandre Gramfort, Thomas Moreau, and Rémi Fla-
mary. Skada-bench: Benchmarking unsupervised domain
adaptation methods with realistic validation on diverse
modalities, 2025. URL https://arxiv.org/abs/
2407.11676.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,
and Barnabás Póczos. Mmd gan: Towards deeper under-
standing of moment matching network. Advances in
neural information processing systems, 30, 2017.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael
Jordan. Learning transferable features with deep adap-
tation networks. In Francis Bach and David Blei, edi-
tors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 97–105, Lille, France, 07–
09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/long15.html.

https://arxiv.org/abs/2407.11676
https://arxiv.org/abs/2407.11676
https://proceedings.mlr.press/v37/long15.html
https://proceedings.mlr.press/v37/long15.html


Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.
Jordan. Deep transfer learning with joint adaptation
networks, 2017. URL https://arxiv.org/abs/
1605.06636.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and Anupam Datta. Gender bias in neural natural
language processing. Logic, language, and security: es-
says dedicated to Andre Scedrov on the occasion of his
65th birthday, pages 189–202, 2020.

Rachel Luo, Aadyot Bhatnagar, Yu Bai, Shengjia Zhao,
Huan Wang, Caiming Xiong, Silvio Savarese, Stefano
Ermon, Edward Schmerling, and Marco Pavone. Local
calibration: metrics and recalibration. In Uncertainty in
Artificial Intelligence, pages 1286–1295. PMLR, 2022.

David Madras, Elliot Creager, Toniann Pitassi, and Richard
Zemel. Learning adversarially fair and transferable rep-
resentations. In International Conference on Machine
Learning, pages 3384–3393. PMLR, 2018.

Charlie Marx, Sofian Zalouk, and Stefano Ermon. Calibra-
tion by distribution matching: Trainable kernel calibration
metrics. Advances in Neural Information Processing Sys-
tems, 2023.

Charlie Marx, Sofian Zalouk, and Stefano Ermon. Calibra-
tion by distribution matching: trainable kernel calibration
metrics. Advances in Neural Information Processing
Systems, 36, 2024a.

Charlie Marx, Sofian Zalouk, and Stefano Ermon. Calibra-
tion by distribution matching: trainable kernel calibration
metrics. Advances in Neural Information Processing
Systems, 36, 2024b.

Rayan Mazouz, Karan Muvvala, Akash Ratheesh Babu,
Luca Laurenti, and Morteza Lahijanian. Safety guaran-
tees for neural network dynamic systems via stochastic
barrier functions. Advances in Neural Information Pro-
cessing Systems, 35:9672–9686, 2022.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In Proceedings of the AAAI conference
on artificial intelligence, volume 29, 2015a.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In Proceedings of the AAAI conference
on artificial intelligence, volume 29, 2015b.

Victor M Panaretos and Yoav Zemel. Statistical aspects of
wasserstein distances. Annual review of statistics and its
application, 6(1):405–431, 2019.

Sneh Pandya, Purvik Patel, Brian D. Nord, Mike Walmsley,
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