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Abstract

Distribution matching (DM) is a fundamen-
tal tool in trustworthy machine learning
(TML), with applications in fairness, calibra-
tion, and domain adaptation. While prior
work advances individual DM methods based
on information-theoretic and geometric di-
vergences, a unified comparative framework
remains lacking. We propose a framework
integrating DM methods, metrics, and TML
tasks to enable systematic comparisons. To
our knowledge, this is the first work to com-
pare latent spaces in TML while addressing
scaling inconsistencies via PCA whitening.
We empirically evaluate MMD, Sinkhorn and
adversarial DM calibration methods across
fairness, calibration, and domain adaptation.
Our findings reveal: (1) simple NLL training
objective with post-hoc calibration can out-
performs other DM methods; (2) logit-based
fairness methods outperform latent-based ap-
proaches; and (3) error and DM metrics show
a U-shaped trend, and we connect this insight
to theory Zhao et al. [2019b]. These insights
inform the selection and refinement of DM
algorithms for TML applications.

1 Introduction

Domain-invariant representation learning (DIRL)
[Zhao et al., 2019a, 2022] aims to learn a represen-
tation function gθ : X→ Z, which map data from dif-
ferent domains into a shared latent space where their
distributions align, enabling models to focus on task-
relevant features while ignoring domain-specific vari-
ation as shown in ??. Unlike representation learning
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for classification which seeeks to maximize the diver-
gence between class distributions, DIRL seeks to min-
imize the divergence between the domain distribution.
This approach is foundational to many trustworthy
machine learning (TML) tasks—such as fair classifi-
cation, domain adaptation, and uncertainty calibra-
tion—because it addresses the pervasive challenge of
distribution shift that undermines model reliability in
real-world applications.

Prior work on distribution matching has primarily
been developed within specific TML tasks, often fo-
cusing on individual approaches rather than a compar-
ative or unified framework [Han et al., 2023b, Reddy,
2022b, Tao et al., 2023, Gulrajani and Lopez-Paz,
2020, Marx et al., 2024b]. For instance, in uncer-
tainty calibration [Marx et al., 2024b], DM has been
explored using kernel-based approaches such as Max-
imum Mean Discrepancy (MMD) to align predicted
and true confidence distributions. In contrast, domain
adaptation methods typically rely on adversarial learn-
ing, where generative adversarial networks (GANs) or
domain classifiers enforce domain-invariant represen-
tations [Ganin et al., 2016b]. In fairness, logit-based
methods enforce fairness by directly constraining out-
put distributions [Chung et al., 2024a], while latent
space-based methods align intermediate feature distri-
butions [Madras et al., 2018]. Consequently, there is
limited understanding of which DM methods general-
ize best across tasks or how different alignment tech-
niques trade off between computational efficiency, sta-
bility, and effectiveness.

To bridge this gap, we propose a unified framework for
systematically comparing DMmethods across multiple
TML tasks. Our framework integrates representative
DM methods including Maximum Mean Discrepancy
(MMD) [Gretton et al., 2012], Sinkhorn divergence
[Feydy et al., 2019a], and adversarial domain align-
ment. We evaluates their performance on three major
TML tasks: fairness, calibration, and domain adap-
tation. While previous studies consider distribution
matching (DM) in isolation for individual tasks, our
framework enables cross-task comparison. In particu-
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Table 1: Unified distribution-matching (DM) formalization across calibration (Calib), fairness (DP), and domain
adaptation (DA).

Task Ltask Domains d Matched object /
matcher

DM constraint
(type)

Calib E[ℓ(fψ(gθ(x)), y)] {forecast,target} (y′, q) with
q = softmax(fψ(gθ(x)))

D
(
p(y |q), p(ŷ |q)

)
≤ δ

(conditional)

Fair (DP) E[ℓ(fψ(gθ(x, ε)), y)]
/ or −I(x, z |d)

sensitive groups
(d∈{A,B})

z = gθ(x, ε) / or q D
(
p(z |d=1), p(z |

d=2)
)
≤ δ

(unconditional DP)
EO variant : D

(
p(z |

d, y), p(z |y)
)
≤ δ

DA E[ℓ(fψ(gθ(x, ε)), y)]
(ERM on src)

{Source,Target} domain-invariant
z = gθ(x, ε)

D
(
p(z |src), p(z |

tgt)
)
≤ δ

(unconditional)

Symbols: x input, y target, z = gθ(·) representation, q = softmax(fψ(z)); D can be MMD/Sinkhorn/adversarial.

lar, it reveals how intrinsic measures (MMD, Sinkhorn)
align with task-specific objectives, including fairness
and calibration metrics such as ECE [Guo et al., 2017b]
and DP [Han et al., 2023b]. Additionally, we introduce
a normalized divergence metric to control for latent
space scaling, ensuring fair evaluation DM methods
using non-parametric geometric divergences that can
be computed directly from samples.

Our empirical results reveal key trends in DM ef-
fectiveness across tasks and highlight limitations in
current methods that future research must address.
First, we find that simple NLL training with post-
hoc calibration can outperform other DM-based cal-
ibration methods. Second, although most fairness
research has focused on representation learning (i.e.,
latent-based methods), we show that logit-based meth-
ods consistently outperform latent-based ones. Lastly,
we demonstrate that strictly minimizing distributional
discrepancy is not beneficial for domain adaptation by
showing that both error and DM metrics exhibit a U-
shaped trend. This suggest the existence of a optimal
region that minimizes errors by controling DMmetrics.
Through this study, we aim to guide the selection of
DM techniques for TML applications and inspire the
development of more robust, generalizable DM algo-
rithms. Our contributions can be summarized as fol-
lows:

1. We formalize a common theoretical framework
that integrates DIRL and DM methods under a
single umbrella, enabling systematic comparisons.

2. We propose a PCA whitened version of a distribu-
tion matching metric to be more fair when com-
paring methods in latent representations spaces.

3. Using the unified DM framework, we evaluate
different DM methods across fairness, domain

adaptation, and calibration tasks, highlighting
their connection between intrinsic metric (e.g.,
MMD, Sinkhorn) and task specific metric (e.g.,
DP, ECE), and provide insightful guideline for
practical usage.

2 Unified Framework for Distribution
Matching and Trustworthy ML
Tasks.

Notation. Let x ∈ X, y ∈ Y, and d ∈ {1, 2, . . . , k}
denote random variables corresponding to the input,
target (optional), and domain label, respectively. Let
z := gθ(x, y,d, ϵ) ∼ pθ(z|y,x,d) denote the latent
representation of x, and for logit based method, we
denote q̂ := gθ(x, y,d, ϵ) ∼ pθ(q̂|y,x,d) where gθ is
called the matcher with parameters θ that may op-
tionally depend on the target variable y, the domain d,
and exogenous noise ϵ to encompass stochastic align-
ers. If g does not depend on d and/or ϵ we will sup-
press notation w.r.t. these random variables for no-
tational simplicity. Let pdata(x, y,d) denote the true
data distribution. Let ϕ denote parameters of vari-
ational models or distributions, e.g., qϕ(x, y,d) will
denote a variational distribution and hϕ(z) will de-
note a variational discriminator for adversarial learn-
ing. Let ψ denote application-specific parameters, e.g.,
ŷ := fψ(z) will denote the predicted class based on
the given classifier head in fair classification. En-
tropy, cross entropy, and mutual information will be
denoted by H(x) and Hc(x, z), and I(x, z), respec-
tively. Let D(p, q) denote a distribution divergence be-
tween p and q, e.g., DKL, DJSD, and DWρ will denote
KL, JSD, and Wasserstein-ρ divergences, respectively.
Similarly, let D̂, D, and D denote an approximation,
an upper bound, or a lower bound of a divergence re-
spectively. Because DM involves mininizing a diver-
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gence w.r.t. the matcher parameters θ, we will let
D(θ) := D(pθ(z|d=1), pθ(z|d=2)) with slight abuse of
notation.

Distribution Matching Problem. The distribution
matching problems we consider can be formulated as
a task-specific objective plus a distribution matching
constraint on the matched representation.

Definition 1. (Distribution Matching Problem). A
distribution matching problem minimizes a task objec-
tive Ltask(f̃ψ, g̃θ), where f̃ψ is a task-specific model and
g̃θ is the matcher model, subject to a DM constraint
on the matched representation z̃ := g̃θ(x, y,d, ϵ):

min
ψ,θ

Ltask(f̃ψ, g̃θ) s.t. D(pθ(z̃|d=1), pθ(z̃|d=2)) ≤ δ

(1)

where D(·, ·) is a distribution divergence and δ is the
DM slackness hyperparameter.

In practice, minimizing a distribution divergence is
challenging when only samples are available. To
address this, we employ information-theoretic diver-
gences through parametric variational bounds and ge-
ometric divergences through non-parametric estima-
tors, as detailed in section D.1. We will first review
the main approaches for minimizing distributional di-
vergence on different TML tasks.

2.1 Unified Formalization of Trustworthy
ML Tasks as Distribution Matching

Many trustworthy ML tasks can be formulated as DM
problems. In some cases, DM is fundamental to the
trustworthy ML task (e.g., fairness or calibration),
while in others, DM is one approach to the task (e.g.,
domain adaptation). For the tasks where DM is fun-
damental, the key question is: What is the empirically
achievable Pareto frontier between the task objective
and the DM constraint (e.g., fairness-accuracy trade-
off)? For the tasks where DM is an approach, the key
question is: Is DM performance correlated with the
relevant task performance (e.g., does better DM yield
better domain adaptation performance)? In particu-
lar, we would like to disentangle the effect of the DM
algorithm—which may be far from optimal—from the
task performance. We conjecture that in some cases,
the DM algorithm fails to achieve the DM objective
even though the task objective may be reasonable.

Group Fair ML as Distribution Matching The
goal of fair learning is to be as accurate as possible
while satisfying a fairness constraint. Demographic
parity (DP) (also known as statistical parity) is one
common notion of group fairness that is satisfied if
and only if p(ŷ = 1|d=1) = pθ(ŷ = 1|d=2), i.e., these

two distributions match. Fair classification seeks to
directly learn predictions that are fair. Fair represen-
tation learning seeks to learn a representation such
that all downstream tasks will be fair. We unify fair
learning under our DM framework and notation below.

Proposition 1. Fair learning [Madras et al., 2018,
Song et al., 2019b] w.r.t. DP is a DM prob-
lem (1) with g̃θ(x, y,d, ϵ) = gθ(x, ϵ) and Ltask =
E[ℓ(fψ(gθ(x, ϵ)), y)] for fair classification and Ltask =
−I(x, z = gθ(x, ϵ)|d) for fair representation learning.

In practice, both the classification and mutual in-
formation task objectives are often combined (e.g.,
[Madras et al., 2018, Gong et al., 2024] approximate
mutual information via a VAE objective).

Calibration as DM Problem Vaicenavicius et al.
[2019b] formalized canonical calibration for multiclass
classification, where calibration means that the pre-
dicted probability vector for all classes coincides with
the true underlying class probabilities:

p(y = y|q̂) = p(ŷ = y|q̂) := qy, ∀y ∈ Y, q̂ ∈ ∆|Y|

(2)

where q̂ := gθ(x) is the predicted class probabilities
for k classes and ∆|Y| denotes the probability sim-
plex. This calibration condition is a type of condi-
tional distribution matching problem, i.e., match the
marginal distribution of predictions to the true distri-
bution conditioned on the model’s output q. In this
case, the domain label is whether it is the real target
variable or the predicted target variable. Marx et al.
[2023] demonstrated that indeed many types of cali-
bration including regression, classification, and deci-
sion calibration can be framed as conditional distribu-
tion matching problems. In fact, because the marginal
distribution of the conditioning variables is the same
regardless of the domain, the problem can be equiva-
lently written as an unconditional DM problem. We
now unify the results from Marx et al. [2023] using our
framework below.

Proposition 2. Calibration during training can be
interpreted as a distribution matching problem. Let
ŷ′, y′, and c denote the forecast, target, and con-
ditioning variables, respectively, as defined in Marx
et al. [2023, Tables 1 and 2]. Here, ŷ′ and y′ are
derived transformations of the raw forecast ŷ and the
true outcome y,1 calibration during training is a DM
problem (1) with g̃θ(x, y,d, ϵ) = (ỹ′, gθ(x, ϵ)), where
ỹ′ = 1(d=1)ŷ′+1(d=2)y′ selects between the forecasted

1Note that in many cases, ŷ′ = ŷ and similarly y′ = y,
but there are some cases from Marx et al. [2023] such as
quantile calibration for regression or top-label calibration
for classification that require using either the predicted
CDF or indicator functions of ŷ and y.
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and target variables, c = gθ(x, ϵ) represents the con-
ditioning variable, and Ltask = E[ℓ(gθ(x, ϵ), y)] is the
standard negative log-likelihood empiricial risk mini-
mization (ERM) objective.

Domain Adaptation via Domain-Invariant Fea-
tures Inspired by the bounds on domain adaptation
generalization by Ben-David et al. [2006a], many do-
main adaptation papers aim to learn domain-invariant
features (i.e., latent features whose distribution is inde-
pendent of the domain labels). Specifically, Ben-David
et al. [2006a] showed that the risk on the target domain
could be bounded by the risk on the source domain
plus the divergence between the feature distributions
and a constant. A natural approach is to reduce the
divergence between the feature distributions (i.e., dis-
tribution matching). Thus, domain-invariant domain
adaptation can be unified under our framework.

Proposition 3 (Domain-invariant domain adapta-
tion is DM). Domain-invariant domain adaptation is
a DM problem (1) with g̃θ(x, y,d, ϵ) = gθ(x, ϵ) and
Ltask = E[ℓ(fψ(gθ(x, ϵ)), y)] is the standard ERM ob-
jective where fψ is the classification head on top of the
domain-invariant representation z = gθ(x, ϵ).

2.2 Normalized Geometric Divergences for
Evaluating DM Methods

One of the challenges with comparing DM methods is
properly evaluating how well the DM constraint was
satisfied. Ideally, we would measure the divergence of
the latent domain distributions. However, even esti-
mating distribution divergences is known to be a chal-
lenging problem in its own right. While the adversar-
ial and VAE-based methods could provide bounds on
information theoretic divergences, they would require
training an auxiliary model at test time to evaluate
each method. Thus, we focus on the non- paramet-
ric divergences MMD and Sinkhorn that can be esti-
mated with only samples. However, there is one key
challenge with these geometric divergences when com-
paring across diverse methods. The scale of the latent
distribution can significantly affect the absolute MMD
or Sinkhorn divergence estimate because geometric di-
vergences are highly sensitive to scale. This is a prob-
lem if the latent space is learned since the latent space
scale is arbitrary and generally distorted [Jing et al.,
2021, Ermolov et al., 2021]. Thus, comparing methods
using MMD or Sinkhorn directly would be unfair. To
overcome this, we propose a simple approach based on
applying principal component analysis (PCA) whiten-
ing [Kessy et al., 2018] of the latent space before mea-
suring the divergence. This normalization eliminates
the effect of scale in the latent distributions. We do not
consider zero phase component analysis (ZCA) whiten-

ing, which applies rotation after PCA whitening since
L2 based metrics are invariant under rotation. Sim-
ple proof can be found on section B. In contrast to
latent space, logit space do not suffer from distortion
problem since its axes are semantically tied to classes
and trained under cross entropy, thus result into well-
structured simplex equiangular tight frame (ETF) ge-
ometry at convergence also known as neural collapse
[Papyan et al., 2020]. Therefore, we do not have to
apply PCA whitening.

3 Experimental Setup

Given our unified DM framework for TML tasks, we
aim to systematically compare both DM methods and
DM evaluation metrics, where we evaluate DM meth-
ods both intrinsically (i.e., how well the distributions
match) and extrinsically (i.e., how much the DM ap-
proach helps the TML task). In particular, we are in-
terested in whether better DM corresponds to better
task-specific metrics and vice versa or if the perfor-
mance tradeoff is more complex—while most methods
have theoretic grounding, it is unclear how it trans-
lates to empirical results. We are also interested in
comparing methods for particular tasks and asking
which method is the best method depending on the
context. Finally, we explore a few other task-specific
ideas along the way such as whether we should match
latent representations or logits. To systematically and
effectively do this, we fix the model architecture and
the form of the objective function and only modify
the implementation of the DM regularization to the
problem. Specifically, we apply three representative
DM methods (kernelized MMD, Sinkhorn, and adver-
sarial) to three representative TML tasks (calibration,
group fairness, and domain adaptation) across a vari-
ety of datasets. Ultimately we aim to elucidate some
of the nuances involved in using DM methods for TML
tasks and give practical guidelines for practitioners.

3.1 Experimental Setup

Datasets and Hyperparameter Tuning We con-
sider ADULT dataset [Becker and Kohavi, 1996],
COMPAS, and ACS-T datasets for calibration and
fairness task. For the domain adaptation task, we
use the MNIST and USPS dataset [Deng, 2012, Hull,
1994]. We tune the hyperparameters of each method
using a TPE sampler [Bergstra et al., 2011] to find the
best model and apply early stopping by tracking the
validation loss. More detail can be found on section A.

Calibration Training We follow an individual cal-
ibration approach, as described in Marx et al. [2024a].
While prior work primarily used the Maximum Mean
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Discrepancy (MMD) method, we extend the study by
incorporating both the Sinkhorn divergence and an ad-
versarial method. Since no prior work has applied ad-
versarial techniques in this context, we implemented a
GAN-based method designed to match the predicted
distribution to the target ground-truth distribution.
For post hoc calibration, we apply temperature scal-
ing Hinton [2015].

Fair Classification Training Most fairness bench-
mark papers [Han et al., 2023a, Reddy, 2022a] focus
on fair representation learning, which we refer to as
latent-based methods. However, there is a lack of prior
work studying logit-based approaches [Chung et al.,
2024b]. In this paper, we compare distribution match-
ing using both logit-based and latent-based methods
using Sinkhorn, MMD, adversarial.

Domain Adaptation Training In this paper, we
focus on unsupervised domain adaptation setting
where we do not have access to the target label. [Wil-
son and Cook, 2020]. We use Sinkhorn based method
[Courty et al., 2014], MMD based method [Tzeng
et al., 2014], and adversarial based method [Ganin
et al., 2016a].

Task Specific Metrics For all tasks, we use ac-
curacy (or equivalently error) as a measure for the
raw model performance (for domain adaptation, this is
source accuracy). For each task, there is an additional
task-specific metric. For the calibration task, we use
the Expected Calibration Error (ECE) [Naeini et al.,
2015a] based on measuring the discrepancy between
the model confidence and accuracy: ECE =

M∑
m=1

|Bm|
n
|E [I (ŷ = y) | q̂ ∈ Bm]− E [q̂ | q̂ ∈ Bm]| ,

(3)
where Bm denotes the set of samples in the m-th con-
fidence bin, |Bm| is the number of samples in bin m, n
is the total number of samples, q̂ is predicted proba-
bility (confidence), and ŷ is predicted label For group
fairness, we use Demographic Parity (DP) difference
that measures the discrepancy of the true positive rate
between different domains:

DP = |pθ(ŷ = 1|d = 1)− pθ(ŷ = 1|d = 2)| (4)

For domain adaptation, we simply use the target ac-
curacy (ACC).

4 Experimental Results Across Tasks

In each of the following sections, we highlight the most
interesting results for each task but provide additional

discussion in the appendix. For each task, we consider
how well DM metrics correlate with accuracy and their
corresponding task-specific metrics. In some cases, we
find that, despite the theoretic grounding, lower DM
metric does not imply a better task-specific metric—
particularly for domain adaptation. The other key
question is which method is most practical or useful
for each task given the results. We also make several
other observations that are specific to each task.

4.1 Calibration Task Results

The Sinkhorn divergence best captures distri-
butional differences, whereas MMD fails to do
so. As shown in Figure 1, the correlation between
Sinkhorn divergence and ECE is mostly negative be-
fore temperature scaling (TS), consistent with the defi-
nition of calibration Equation (2). In contrast, the cor-
relation between MMD and ECE is sometimes positive
Figure 1b. This discrepancy arises from the stronger
entropic regularization in MMD, which makes it a nois-
ier estimator compared to the Sinkhorn divergence
[Feydy et al., 2019a]. Moreover, the MMD regularizer
fails to capture any correlation across metrics on large-
scale datasets Figure 1a, even though it can still cap-
ture correlations on small-scale datasets. This failure
can be explained by the fact that MMD is incomplete
when the feature space X is not compact, which often
occurs in large-scale datasets due to outliers [Simon-
Gabriel et al., 2023, McCarty, 2025]. Lastly, as shown
in Table 2, the MMD values across all methods and
datasets are so small that they become indistinguish-
able.

There is a trade-off between Error and ECE
(if post-hoc calibration is not used). Extensive
research in fairness has investigated the trade-off be-
tween Demographic Parity (DP) and accuracy (ACC)
[Han et al., 2023a, Plecko and Bareinboim, 2024, Gong
et al., 2024]. However, the trade-off between ACC and
ECE has not been thoroughly explored in the calibra-
tion domain. Recent work reveals a negative corre-
lation between ECE and Error when varying weight
decay strength [Wang and Zhang, 2024]. We also ob-
serve this trend: before applying Temperature Scaling
(TS), Figure 1 shows a negative correlation between
ECE and ACC, which indicates such a trade-off. We
analyze the the case when post-hoc calibration is used
in section C.1.

Which DM method should we use for Calibra-
tion task? Wang et al. [2021] show that applying
TS to an unregularized cross-entropy model can out-
perform regularized alternatives in terms of ECE. Mo-
tivated by this, we include this baseline for compar-
ison with other DM methods. Interestingly, training
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(a) Calibration MMD (b) Calibration Sinkhorn Divergence (c) Calibration Adversarial

Figure 1: Kendall ranking correlation matrix of task specific metrics (Error and ECE), and DM metrics (MMD
and Sinkhorn) across different calibration methods on ACS-T dataset.

Table 2: Experimental results for tabular classification tasks for calibration. We display test metrics for each
training procedure, with and without post-hoc calibration [Guo et al., 2017b]. n is the number of examples;
d is the number of features. We repeat all the experiments across 10 random seeds and report the mean and
standard deviation for each metric. We bold top 2 methods if average values are tie.

Dataset Training Objective ACC ↑ ECE ↓ SINK ↓ MMD ↓

Adult

n= 30162
d= 102

NLL 0.8435± 0.002 0.0163± 0.003 0.1894± 0.002 0.0000± 0.000
NLL + MMD 0.8438± 0.002 0.0175± 0.002 0.1887± 0.002 0.0000± 0.000
NLL + Sink (Ours) 0.8429± 0.003 0.0166± 0.003 0.1889± 0.003 0.0000± 0.000
NLL + Adv (Ours) 0.8446± 0.002 0.0155± 0.003 0.1884± 0.001 0.0000± 0.000

Compas

n= 6172
d= 401

NLL 0.6481± 0.033 0.0402± 0.011 0.2936± 0.009 0.0001± 0.000
NLL + MMD 0.6372± 0.033 0.0407± 0.014 0.2956± 0.010 0.0000± 0.000
NLL + Sink (Ours) 0.6361± 0.034 0.0400± 0.010 0.2984± 0.008 0.0000± 0.000
NLL + Adv (Ours) 0.6579± 0.012 0.0402± 0.009 0.2903± 0.007 0.0001± 0.000

ACS-T

n= 172508
d= 1567

NLL 0.6502± 0.003 0.0397± 0.004 0.4087± 0.002 0.0000± 0.000
NLL + MMD 0.6496± 0.003 0.0430± 0.004 0.4081± 0.002 0.0000± 0.000
NLL + Sink (Ours) 0.6585± 0.001 0.1411± 0.002 0.3722± 0.001 0.0000± 0.000
NLL + Adv (Ours) 0.6497± 0.003 0.0414± 0.004 0.4089± 0.002 0.0000± 0.000

with the NLL objective followed by TS often achieves
ECE comparable to that of other DM methods, consis-
tent with our explanation in section C.1. Even with-
out TS, NLL alone yields competitive ECE on small-
scale datasets table 2. While NLL + Adv sometimes
achieves the lowest ECE (e.g., on Compas), it also
introduces instability when the feature dimension is
small, as in the German dataset section C.1, leading
to high variance in both ACC and ECE.

Takeaway for Calibration

We recommend that practitioners use NLL +
post-hoc calibration for large-scale datasets,
while opting for NLL without post-hoc calibra-
tion on small-scale datasets, since post-hoc cali-
bration can lead to miscalibration when the val-
idation set is too small.

4.2 Fair Classification Results

Latent-based methods fail to capture consistent
correlations due to noise. By definition of demo-
graphic parity (DP) in eq. (4), we expect distribution-
matching (DM) metrics to exhibit a positive correla-
tion with DP and a negative correlation with error,
reflecting the well-known trade-off between error and
fairness [Plecko and Bareinboim, 2024]. However, as
shown in fig. 8b, both Sink and MMD display the op-
posite pattern: they are positively correlated with er-
ror and negatively correlated with DP. Moreover, 8c
indicates that latent-based adversarial methods yield
weak or inconsistent correlations between DM and task
metrics.

In contrast, the logit-based results (Figure 9) reveal
a clearer trend: DM metrics are negatively correlated
with error and positively correlated with DP, with the
exception of NLL + Sink. Interestingly, NLL + Sink
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Figure 2: Fairness–accuracy trade-off comparison
across methods on ACS-T dataset, with each method
distinguished by a unique shape and each represen-
tation type (latent vs. logit) by a distinct color. We
can clearly observe that logit shows better trade off by
attaining comparable or higher accuracy at substan-
tially lower ∆ DP near the Pareto optimal frontier

appears to break the trade-off entirely, showing almost
no relationship between error and DP—as visualized
in Figure 6, where its curve forms an almost vertical
line in the upper-right corner.

Sinkhorn Divergence can excessively shrink la-
tent representations and validates the need for
PCA whitening for a proper DM metric. We
observe that NLL + Sink often causes extensive dis-
tortion of the representation distribution, leading to
extremely low DP values (e.g., 0.0025 on ACS-T, see
table 7). However, this benefit comes at a substantial
cost: accuracy is reduced by nearly 10% compared to
other methods. Furthermore, the Sinkhorn distance
between distributions is relatively small before apply-
ing PCA, which may lead to an unfair comparison
across metrics (Table 7). This effect is well known
that the learned latent space can have arbitrary scal-
ing and geometric distortion [Jing et al., 2021, Ermolov
et al., 2021]. This issue is evident in the SINK values
reported in Table 7: before applying PCA, the NLL +
Sink method often shrinks the distribution excessively,
leading to artificially low SINK values. In contrast,
logit-based methods do not exhibit this problem. Ap-
plying PCA whitening that we introduce mitigates this
issue by normalizing the latent space, and we clearly
observe that the resulting scales become comparable
across methods.

Which DM method should we use for Fairness
task We observe that logit-based methods capture a

more consistent correlation between DM metrics and
task-specific performance (section 4.2).

This consistency enables better control of the
DP–ACC trade-off, as shown in fig. 2. Logit-based
methods concentrate along the Pareto-optimal frontier
of the fairness–utility trade-off (i.e., the lower-right re-
gion), and encounter the fairness–utility cliff only in
the highest-accuracy regime.

In addition, we note that MMD-based methods can
effectively manage the trade-off by producing a wide
spread of points across different DP values (fig. 6).
Sinkhorn-based methods are primarily concentrated
in the high-accuracy region, but they are also asso-
ciated with elevated DP values. In contrast, adver-
sarial methods exhibit high variance: for latent-based
regularization, points scatter widely across the plot,
while for logit-based regularization, DP remains within
a narrow range but accuracy is consistently the lowest
among the three methods.

Takeaway for Fairness

We recommend practitioners to adopt logit-
based methods over latent-based ones, as they
provide a more favorable DP–ACC trade-off.
Sinkhorn-based methods are preferable when
achieving high accuracy is the primary goal, even
at the cost of moderate DP gaps. In contrast,
MMD-based methods are recommended when
minimizing DP disparity is the priority, as they
offer greater flexibility with respect to the accu-
racy–fairness trade-off.

4.3 Domain Adaptation Results

U-shaped Trend in Error In domain adaptation,
Ben-David et al. [2006b] provide a useful bound on
the target error in terms of the source error via the
H-divergence, suggesting that a good representation
should achieve both low source error and low H-
divergence between source and target distributions.
However, computing the H-divergence is often imprac-
tical in practice, so we instead employ geometric diver-
gences to approximate the distance between distribu-
tions. Interestingly, our experimental results deviate
from the direct implication of this theoretical bound,
a phenomenon also noted by Zhao et al. [2019b]. As
shown in section C.3, low geometric divergence does
not necessarily correspond to low target error. In fact,
as geometric divergence increases up to a certain point,
target error decreases, but beyond that point, the tar-
get error begins to rise again, forming a U-shaped
trend.
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Table 3: Experimental results for image classification tasks for domain adaptation. n: target examples; d: target
features. We repeat all the experiments across 10 random seeds and report the mean and standard deviation for
each metric. We bold top 2 methods if average values are tie.

Dataset Training Objective Source ACC ↑ Target ACC ↑ SINK ↓ SINK PCA ↓ MMD ↓ MMD PCA ↓

MNIST→USPS

n= 9298
d= 256

NLL + MMD 0.9583± 0.006 0.6162± 0.047 135.9770± 17.334 746.6720± 0.802 0.1312± 0.016 0.0033± 0.000
NLL + Sink 0.9461± 0.007 0.6895± 0.029 2.0890± 0.126 741.1450± 0.253 0.0112± 0.002 0.0021± 0.000
NLL + Adv 0.9412± 0.017 0.6053± 0.052 192.9870± 19.096 746.7900± 0.594 0.1315± 0.010 0.0033± 0.000

USPS→MNIST

n= 70000
d= 784

NLL + MMD 0.9015± 0.025 0.5647± 0.060 78.6320± 11.157 742.5810± 0.557 0.0269± 0.004 0.0023± 0.000
NLL + Sink 0.9106± 0.018 0.5451± 0.031 4.6300± 0.260 741.6220± 0.380 0.0040± 0.001 0.0022± 0.000
NLL + Adv 0.8859± 0.015 0.5010± 0.012 139.5100± 27.899 741.8970± 0.599 0.0343± 0.008 0.0022± 0.000

By leveraging motivating empirical result above, we
can explain the information theoretic lower bound
on [Zhao et al., 2019b] where source error is εS(h ◦
g) = Ex∼DS [|h(g(x))− fS(x)|], dJS(DYS ,DYT ) rep-
resent Jensen Shannon divergence (JSD) between
marginal label distribution, and dJS(DZS ,DZT ) repre-
sent JSD between latent distribution.

Theorem 1 (Restatement of Theorem 4.3 in Zhao
et al. [2019b]). Suppose the condition in Lemma 4.8
holds and dJS(DYS ,DYT ) ≥ dJS(DZS ,DZT ), then:

εS(h◦g)+εT (h◦g) ≥
1

2

(
dJS(DYS ,DYT )− dJS(DZS ,DZT )

)2
.

We can treat dJS(DYS ,DYT ) as constants because
they remain fixed while dJS(DZS ,DZT ) varies. Since
dJS(DYS ,DYT ) is non-negative, we can minimize the
target error and source erorr by making dJS(DZS ,DZT )
close to dJS(DYS ,DYT ). This trend can also be observed
in section C.3. Both errors decrease down to a cer-
tain minimum point as increase of DM metrics, which
implies that at minimum point i.e. dJS(DZS ,DZT ) =
dJS(DYS ,DYT ).

One downside of this theorem is that it does
not explain the error increase once dJS(DZS ,DZT )
exceeds dJS(DYS ,DYT ), because theorem 1 requires
dJS(DYS ,DYT ) ≥ dJS(DZS ,DZT ). Nevertheless, it still
provides meaningful insight that we can achieve op-
timal target accuracy by controlling dJS(DZS ,DZT ) via
varying the regularization weight on distribution di-
vergence.

Which DM method should we use for domain
adaptation tasks?

As shown in section C.3, Sinkhorn exhibits a clear
correlation with both error and DM metrics, whereas
other measures appear noisy. This indicates that op-
timizing with Sinkhorn can effectively control the er-
ror. Furthermore, as presented in table 3, Sinkhorn
achieves the highest target ACC on MNIST→USPS
and the second-highest target ACC, which is very close
to the best result.

Takeaway for Domain Adaptation

We recommend practitioners use Sinkhorn-based
methods, as they can effectively control error
by regulating DM metrics. Moreover, the U-
shaped trend between error and DM metrics can
guide practitioners to tune hyperparameters to-
ward the optimal region.

5 Conclusion

We introduced a unified framework that casts cal-
ibration, group fairness, and domain adaptation as
distribution matching (DM) problems, enabling fair
comparisons of MMD, Sinkhorn, and adversarial ap-
proaches across tasks. Normalizing latent spaces via
PCA whitening makes geometric DM metrics com-
parable and reveals consistent trends. Empirically,
(i) plain NLL with post-hoc temperature scaling is
a strong alibration baseline; (ii) logit-based fairness
methods better navigate the DP–ACC trade-off than
latent-based ones; and (iii) in domain adaptation, er-
ror follows a U-shaped curve versus DM strength, with
Sinkhorn providing the most controllable knob. Our
findings offer practical guidance and suggest future
research directions. (1) Better DM-based calibration
methods are needed, since a simple NLL baseline often
outperforms most DM approaches. (2) Future work
should develop logit-based fairness methods, as most
existing algorithms remain latent-based.
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Vialard. Unbalanced optimal transport, from theory
to numerics. Handbook of Numerical Analysis, 24:
407–471, 2023.

Carl-Johann Simon-Gabriel, Alessandro Barp, Bern-
hard Schölkopf, and Lester Mackey. Metrizing
weak convergence with maximum mean discrepan-
cies. Journal of Machine Learning Research, 24
(184):1–20, 2023.

Hao Song, Tom Diethe, Meelis Kull, and Peter Flach.
Distribution calibration for regression. In Inter-
national Conference on Machine Learning, pages
5897–5906. PMLR, 2019a.

Jiaming Song, Pratyusha Kalluri, Aditya Grover,
Shengjia Zhao, and Stefano Ermon. Learning con-
trollable fair representations. In The 22nd Inter-
national Conference on Artificial Intelligence and
Statistics, pages 2164–2173. PMLR, 2019b.

Linwei Tao, Younan Zhu, Haolan Guo, Minjing Dong,
and Chang Xu. A benchmark study on calibration.
arXiv preprint arXiv:2308.11838, 2023.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko,
and Trevor Darrell. Deep domain confusion: Max-
imizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor
Darrell. Adversarial discriminative domain adapta-
tion. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 7167–
7176, 2017.

Juozas Vaicenavicius, David Widmann, Carl Ander-
sson, Fredrik Lindsten, Jacob Roll, and Thomas
Schön. Evaluating model calibration in classifica-
tion. In The 22nd international conference on ar-
tificial intelligence and statistics, pages 3459–3467.
PMLR, 2019a.

Juozas Vaicenavicius, David Widmann, Carl Ander-
sson, Fredrik Lindsten, Jacob Roll, and Thomas
Schön. Evaluating model calibration in classifica-
tion. In The 22nd international conference on ar-
tificial intelligence and statistics, pages 3459–3467.
PMLR, 2019b.

Deng-Bao Wang and Min-Ling Zhang. Calibration
bottleneck: Over-compressed representations are
less calibratable. In Forty-first International Con-
ference on Machine Learning, 2024.

Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. Re-
thinking calibration of deep neural networks: Do
not be afraid of overconfidence. Advances in Neural
Information Processing Systems, 34:11809–11820,
2021.

Garrett Wilson and Diane J Cook. A survey of un-
supervised deep domain adaptation. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
11(5):1–46, 2020.

Werner Zellinger, Thomas Grubinger, Edwin
Lughofer, Thomas Natschläger, and Susanne
Saminger-Platz. Central moment discrepancy
(cmd) for domain-invariant representation learning.
arXiv preprint arXiv:1702.08811, 2017.

Han Zhao, Remi Tachet Des Combes, Kun Zhang,
and Geoffrey Gordon. On learning invariant repre-
sentations for domain adaptation. In International
conference on machine learning, pages 7523–7532.
PMLR, 2019a.

Han Zhao, Remi Tachet Des Combes, Kun Zhang,
and Geoffrey Gordon. On learning invariant repre-
sentations for domain adaptation. In International
conference on machine learning, pages 7523–7532.
PMLR, 2019b.

Han Zhao, Chen Dan, Bryon Aragam, Tommi S
Jaakkola, Geoffrey J Gordon, and Pradeep Raviku-
mar. Fundamental limits and tradeoffs in invariant
representation learning. Journal of machine learn-
ing research, 23(340):1–49, 2022.

Shengjia Zhao, Tengyu Ma, and Stefano Ermon. In-
dividual calibration with randomized forecasting.
In International Conference on Machine Learning,
pages 11387–11397. PMLR, 2020.

Shengjia Zhao, Michael Kim, Roshni Sahoo, Tengyu
Ma, and Stefano Ermon. Calibrating predictions to
decisions: A novel approach to multi-class calibra-
tion. Advances in Neural Information Processing
Systems, 34:22313–22324, 2021.

Johanna F Ziegel and Tilmann Gneiting. Copula cal-
ibration. 2014.



Manuscript under review by AISTATS 2026

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[No]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A Experiment Setup

We select the best model based on validation accuracy
on a held-out set. To better understand the trade off
between accuracy and task-specific metrics as well as
to understand the sensitivity and variance of the DM
methods, we then train multiple models by sweeping a
range of the DM regularization parameter λ. Specifi-
cally, we choose a range of 100 total evenly log spaced
interval for {λ∗ · 10−3, λ∗ · 103} where λ∗ indicate best
performing DM loss weight to capture overall effect
of DM loss. This allows us to see the DM method’s
performance across a range of DM regularization val-
ues. From this we can compute the pairwise Kendall’s
Tau correlation matrix across accuracy, DM metrics
(MMD and Sinkhorn), and task-specific metrics (ECE,
DP, and target accuracy). We also use this setup for
generating trade off plots. In addition, we report the
peak GPU memory allocated (GiB) and average run-
time. These metrics were obtained by running the best
hyperparameter configuration across 10 random seeds,
the same setup used for the main results for each tasks
table 2, table 7, table 3.

B Proof of L2 distances invariance
under PCA and ZCA whitening

Lemma 1 (Orthogonal invariance of the Euclidean
norm). Let R ∈ Rd×d be orthogonal (i.e. R⊤R = I).
Then for all z ∈ Rd,

∥Rz∥22 = z⊤R⊤Rz = z⊤z = ∥z∥22.

Hence ∥Rz −Rz′∥2 = ∥z − z′∥2 for all z, z′ ∈ Rd.
Proposition 4 (L2 distances are identical under ZCA
vs. PCA whitening). Let a zero-mean random vec-
tor X ∈ Rd have covariance Σ ≻ 0 with eigende-
composition Σ = UΛU⊤ where U is orthogonal and
Λ = diag(λ1, . . . , λd) ≻ 0. Define the PCA and ZCA
whitening maps

WPCA := Λ−1/2U⊤,

WZCA := UΛ−1/2U⊤.

Then for any x, y ∈ Rd,∥∥WZCAx−WZCAy
∥∥
2
=

∥∥WPCAx−WPCAy
∥∥
2
.

Proof. Observe that WZCA = U WPCA. Set

zPCA :=WPCAx, z′PCA :=WPCAy,

zZCA :=WZCAx = UzPCA, z′ZCA :=WZCAy = Uz′PCA.

By the lemma, since U is orthogonal,

∥zZCA−z′ZCA∥2 = ∥U(zPCA−z′PCA)∥2 = ∥zPCA−z′PCA∥2.

C Additional Results

C.1 Calibration

Post-hoc calibration benefits under-calibrated
models more than already well-calibrated mod-
els. The magnitude of ECE reduction varies by
training method. For example, on the ACS-T dataset,
the decrease in ECE after temperature scaling (TS)
under cross-entropy loss/negative log-likelihood (NLL)
+ Sink objective is the largest among all methods,
starting from the highest initial ECE value (Table 2).
Moreover, NLL + Sink shows the strongest trade-off
between ECE and error, indicating that it is a poorly
calibrated model Figure 1b. After applying TS, how-
ever, this trade-off disappears Figure 4b, while other
methods that exhibit only moderate trade-offs con-
tinue to show them. This pattern is consistent with
Wang et al. [2021], which reports that applying TS
to an overconfident (poorly calibrated) model yields
a larger ECE reduction than applying TS to an al-
ready well-calibrated model. Intuitively, stronger reg-
ularization compresses the distribution of maximum
logits and softens per-example probabilities, leaving
little headroom for post-hoc calibration.

Post-hoc calibration does not reduce ECE on
small scale dataset. Interestingly, on the Compas,
all methods exhibit an increase in ECE after applying
TS while ECE stays same on German dataset. There
are two potential explanations for this. First, as noted
in Section C.1, the methods might already be well cali-
brated, leaving little room for improvement. However,
this explanation can be ruled out: the standard devi-
ation of ECE on Compas is substantially larger than
on other datasets (ex, 0.003 on Adult vs. 0.053 on
German; see Table 4), indicating that the models are
not already well calibrated. A more plausible explana-
tion is that TS relies on a validation set to determine
the optimal temperature. When the validation set is
small, TS can overfit to it for small feature dimension
data (German) or under-fit on large feature dimen-
sion data (Compas) , leading to miscalibration [Guo
et al., 2017b]. Therefore, we do not recommend
to use TS on small scale dataset.

Which DM method is most sensitive to hy-
perparameter tuning for the Calibration task?
Multi-task learning is often sensitive to the weights on
auxiliary losses. Practitioners therefore prefer meth-
ods that are robust to the distribution-matching (DM)
regularization weight λ. To quantify robustness, we
compute the standard deviation (STD) of each key
metric while varying only λ over 100 values evenly
spaced on a log scale, holding all other hyperparam-
eters fixed at the best-performing setting from Sec-
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Table 4: Experimental results for tabular classification tasks for calibration. We display test metrics for each
training procedure, with and without post-hoc calibration [Guo et al., 2017b]. n is the number of examples;
d is the number of features. We repeat all the experiments across 10 random seeds and report the mean and
standard deviation for each metric. We bold top 2 methods if average values are tie.

Dataset Training Objective ACC ↑ ECE ↓ SINK ↓ MMD ↓

Adult

n= 30162
d= 102

NLL 0.8435± 0.002 0.0163± 0.003 0.1894± 0.002 0.0000± 0.000
+ Post-hoc 0.8435± 0.002 0.0123± 0.002 0.1975± 0.001 0.0000± 0.000

NLL + MMD 0.8438± 0.002 0.0175± 0.002 0.1887± 0.002 0.0000± 0.000
+ Post-hoc 0.8438± 0.002 0.0120± 0.003 0.1973± 0.001 0.0000± 0.000

NLL + Sink (Ours) 0.8429± 0.003 0.0166± 0.003 0.1889± 0.003 0.0000± 0.000
+ Post-hoc 0.8429± 0.003 0.0122± 0.003 0.1972± 0.001 0.0000± 0.000

NLL + Adv (Ours) 0.8446± 0.002 0.0155± 0.003 0.1884± 0.001 0.0000± 0.000
+ Post-hoc 0.8446± 0.002 0.0114± 0.002 0.1971± 0.001 0.0000± 0.000

Compas

n= 6172
d= 401

NLL 0.6481± 0.033 0.0402± 0.011 0.2936± 0.009 0.0001± 0.000
+ Post-hoc 0.6481± 0.033 0.0506± 0.013 0.2995± 0.008 0.0001± 0.000

NLL + MMD 0.6372± 0.033 0.0407± 0.014 0.2956± 0.010 0.0000± 0.000
+ Post-hoc 0.6372± 0.033 0.0540± 0.015 0.3039± 0.007 0.0001± 0.000

NLL + Sink (Ours) 0.6361± 0.034 0.0400± 0.010 0.2984± 0.008 0.0000± 0.000
+ Post-hoc 0.6361± 0.034 0.0546± 0.017 0.3061± 0.007 0.0000± 0.000

NLL + Adv (Ours) 0.6579± 0.012 0.0402± 0.009 0.2903± 0.007 0.0001± 0.000
+ Post-hoc 0.6579± 0.012 0.0555± 0.012 0.2991± 0.006 0.0001± 0.001

German

n= 1000
d= 58

NLL 0.6605± 0.024 0.1021± 0.023 0.3551± 0.013 0.0001± 0.000
+ Post-hoc 0.6605± 0.024 0.1044± 0.021 0.3560± 0.009 0.0001± 0.000

NLL + MMD 0.6620± 0.024 0.1084± 0.014 0.3523± 0.006 0.0001± 0.000
+ Post-hoc 0.6620± 0.024 0.1058± 0.020 0.3560± 0.004 0.0001± 0.000

NLL + Sink (Ours) 0.6610± 0.020 0.1188± 0.017 0.3542± 0.015 0.0001± 0.000
+ Post-hoc 0.6610± 0.020 0.1099± 0.016 0.3606± 0.013 0.0001± 0.000

NLL + Adv (Ours) 0.5075± 0.118 0.1104± 0.053 0.4906± 0.027 0.0001± 0.000
+ Post-hoc 0.5075± 0.118 0.1098± 0.041 0.4819± 0.029 0.0001± 0.000

ACS-T

n= 172508
d= 1567

NLL 0.6502± 0.003 0.0397± 0.004 0.4087± 0.002 0.0000± 0.000
+ Post-hoc 0.6502± 0.003 0.0153± 0.003 0.4213± 0.002 0.0000± 0.000

NLL + MMD 0.6496± 0.003 0.0430± 0.004 0.4081± 0.002 0.0000± 0.000
+ Post-hoc 0.6496± 0.003 0.0156± 0.005 0.4213± 0.001 0.0000± 0.000

NLL + Sink (Ours) 0.6585± 0.001 0.1411± 0.002 0.3722± 0.001 0.0000± 0.000
+ Post-hoc 0.6585± 0.001 0.0192± 0.002 0.4186± 0.001 0.0000± 0.000

NLL + Adv (Ours) 0.6497± 0.003 0.0414± 0.004 0.4089± 0.002 0.0000± 0.000
+ Post-hoc 0.6497± 0.003 0.0154± 0.004 0.4217± 0.001 0.0000± 0.000

(a) Calibration MMD (b) Calibration Sinkhorn Divergence (c) Calibration Adversarial

Figure 4: After temperature scaling Kendall ranking correlation matrix of task specific metric (ECE, Error),
and DM metric (MMD, Sinkhorn Divergence) across different calibration methods on ACS-T dataset

tion 4.1. As shown in Table 5, Calib (Sink) attains the
lowest STD for ACC, whereas Calib (MMD) exhibits

superior robustness on the other metrics. This aligns
with the different smoothness and variance proper-
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(a) Peak GPU memory allocated (GiB). (b) Runtime (minutes).

Figure 5: Compute profile for calibration methods on ACS-T: (a) peak GPU memory (GiB) and (b) runtime
(min). Each point is averaged over the same 10 runs used for Table 2.

ties of the regularizers: kernel MMD is bounded and
yields Lipschitz-smooth, low-variance minibatch esti-
mates, so scaling λ perturbs optimization more gen-
tly [Gretton et al., 2012]. By contrast, Sinkhorn di-
vergences, while enjoying fast convergence, produce
sharper transport-aware gradients than MMD (see
Fig. 4 in [Feydy et al., 2019b]), making performance
more sensitive to λ. Finally, adversarial objectives in-
troduce additional min–max stochasticity, which typ-
ically amplifies sensitivity to λ [Ganin et al., 2016b].
Therefore, NLL + MMD) is the most robustness
method in terms of λ sensitivity.

Table 5: Standard deviation of metrics across cali-
bration methods when varying λ with 100 evenly log-
spaced values (lower is better) on the best-performing
model on ACS-T dataset.

Method ACC ECE Sink MMD

NLL + MMD 1.475× 10−4 2.030× 10−4 1.172× 10−5 1.47× 10−1

NLL + SINK 2.938× 10−3 9.485× 10−2 2.720× 10−2 3.66× 10−7

NLL + ADV 1.036× 10−3 1.135× 10−2 3.907× 10−3 3.51× 10−9

Which DM method is most computationally
efficient? We report peak GPU memory allocated
(GiB) and average run time by running the best hy-
perparameter configuration across 10 random seeds,
as shown in Table 2. As illustrated in Figure 10a,
NLL+Adv requires the largest GPU memory footprint
since it introduces a discriminator network. How-
ever, overall, there is no significant difference within
method. In terms of run time, NLL+Sink is the most
expensive due to the iterative nature of optimal trans-
port. Overall, both in memory and run time, plain
NLL remains the most efficient method, which also
achives comparable result table 2.

C.2 Fairness

Comparison between different methods We
note that MMD-based methods can effectively man-
age the trade-off by producing a wide spread of points
across different DP values fig. 6. Sinkhorn-based meth-
ods are primarily concentrated in the high-accuracy
region, but they are also asso- ciated with elevated
DP values. In contrast, adver- sarial methods exhibit
high variance: for latent-based regularization, points
scatter widely across the plot, while for logit-based
regularization, DP remains within a narrow range but
accuracy is consistently the lowest among the three
methods.

Figure 6: Fairness–accuracy trade-off comparison
across methods, with each method distinguished by
a unique color and each representation type (latent
vs. logit) by a distinct marker shape.
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Which DM method is most sensitive to hyper-
parameter tuning for the Fairness task? We
adopt the same setting as in section C.1 to obtain
these results. We expected that NLL + Adv would
have the largest deviation due to the nature of min-
max optimization. For the latent-based methods,
this matches our observation, but interestingly, for
the logit-based methods, it shows the lowest standard
deviation (STD) among the other logit-based meth-
ods in table 6. We can observe this trend in ??,
where the latent-based method shows scattered points
across various regions (red circles), while the logit-
based method’s points are concentrated in a specific
region (red squares). For the latent-based methods,
NLL + MMD shows the lowest STD. We also observe
that applying PCA before evaluating divergence effec-
tively decreases the STD, which implies a more stable
metric, as shown in table 6.

Which DM method is most computationally ef-
ficient? We followed the same setup as in section C.1
to measure the average runtime and peak GPU mem-
ory allocation. The logit-based methods are more effi-
cient in terms of runtime while maintaining compa-
rable peak GPU memory consumption. Therefore,
we recommend using logit-based methods over their
latent-based counterparts, as they not only provide a
better DP-ACC tradeoff (fig. 2) but also offer greater
efficiency.

C.3 Domain Adaptation

U-shape trend over Error and DM metrics.
Following the setup in section C.1, we observe a U-
shaped trend for error versus DM metrics when vary-
ing the strength of λ. This supports the finding that
strict distribution matching is not always beneficial
[Zhao et al., 2019b]. We identify a Pareto front con-
taining models with the lowest error, and the U-shaped
trend implies these models can be reached by adjust-
ing the strength of the DM loss weight figs. 11 and 12.
Notably, this trend is absent for NLL+Adv, which does
not directly minimize geometric divergence.

Which DM method is most sensitive to hyper-
parameter tuning for the Domain Adaptation
task? As expected, NLL + ADV exhibits a low stan-
dard deviation (STD). This is because its performance
shows little sensitivity to the value of λ (fig. 11), a
finding confirmed by its low STD scores across most
metrics in table 8. However, this stability can be a
drawback, as it also means that it is difficult to opti-
mize performance by sweeping the λ hyperparameter.

Table 8: Standard deviation of metrics across do-
main adaptation methods when varying λ with 100
evenly log-spaced values (lower is better) on the best-
performing model on MNIST → USPS dataset.

Method ACC Target ACC Sink Sink PCA MMD MMD PCA

NLL + MMD 5.299× 10−3 4.324× 10−2 3.461 3.968× 10−1 3.027× 10−2 6.093× 10−5

NLL + SINK 2.232× 10−2 5.817× 10−2 3.581 1.156 3.071× 10−2 2.644× 10−4

NLL + ADV 1.270× 10−2 1.704× 10−2 11.699 3.496× 10−1 2.237× 10−2 5.293× 10−5

Which DM method is most computationally ef-
ficient? We expect that geometric divergence-based
methods would have high computational costs, an as-
sumption supported by the peak GPU memory con-
sumption shown in fig. 10. Both MMD and Sinkhorn
exhibit higher GPU memory usage. However, regard-
ing runtime, these geometric methods are actually
faster due to quicker convergence, whereas the adver-
sarial approach NLL + Adv requires a longer training
duration.



Manuscript under review by AISTATS 2026

(a) Peak GPU memory allocated (GiB). (b) Runtime (minutes).

Figure 7: Compute profile for fairness methods on ACS-T: (a) peak GPU memory (GiB) and (b) runtime (min).
Each point is averaged over the same 10 runs used for Table 7.

Table 6: Standard deviation of metrics across fairness both logit and latent based methods when varying λ
with 100 evenly log- spaced values (lower is better) on the best-performing model on ACS-T dataset.

Method ACC DP Sink Sink PCA MMD MMD PCA

NLL + MMD (logit) 6.626× 10−2 3.285× 10−2 6.181× 10−2 – 4.502× 10−4 –
NLL + SINK (logit) 2.382× 10−3 4.238× 10−3 9.751× 10−2 – 1.468× 10−4 –
NLL + ADV (logit) 4.178× 10−4 6.641× 10−3 2.495× 10−3 – 5.241× 10−5 –

NLL + MMD (latent) 4.196× 10−4 1.438× 10−3 1.123 8.507× 10−2 3.700× 10−5 2.304× 10−6

NLL + SINK (latent) 5.706× 10−2 2.701× 10−2 5.215× 10−2 4.999 7.553× 10−5 1.126× 10−5

NLL + ADV (latent) 3.423× 10−2 1.947× 10−2 4.844 1.852 6.713× 10−3 2.677× 10−4

Table 7: Experimental results for tabular classification tasks (latent vs. logit). n: examples; d: features. We
repeat all the experiments across 10 random seeds and report the mean and standard deviation for each metric.
We bold top 2 methods if average values are tie.

Dataset Training Objective ACC ↑ DP ↓ SINK ↓ SINK PCA ↓ MMD ↓ MMD PCA ↓

Adult

n= 30162
d= 102

NLL + MMD (latent) 0.8438± 0.001 0.1898± 0.008 11.2550± 0.562 99.0750± 0.499 0.0113± 0.001 0.0031± 0.000
NLL + Sink (latent) 0.8450± 0.002 0.1886± 0.005 0.0462± 0.009 98.8210± 0.783 0.0015± 0.000 0.0031± 0.000
NLL + Adv (latent) 0.8436± 0.002 0.1885± 0.005 11.7600± 0.709 99.1190± 0.489 0.0117± 0.001 0.0031± 0.000
NLL + MMD (logit) 0.8439± 0.002 0.1906± 0.008 1.6260± 0.104 — 0.0245± 0.002 —
NLL + Sink (logit) 0.8435± 0.002 0.1874± 0.006 1.2580± 0.055 — 0.0215± 0.002 —
NLL + Adv (logit) 0.8429± 0.002 0.1921± 0.007 1.5520± 0.120 — 0.0245± 0.001 —

Compas

n= 6172
d= 401

NLL + MMD (latent) 0.6433± 0.035 0.1153± 0.036 19.0260± 1.060 96.8740± 0.539 0.0024± 0.000 0.0028± 0.000
NLL + Sink (latent) 0.6639± 0.007 0.1252± 0.013 0.9221± 0.115 95.3320± 0.875 0.0013± 0.000 0.0028± 0.000
NLL + Adv (latent) 0.6571± 0.007 0.1241± 0.014 19.2330± 1.032 97.0250± 0.473 0.0023± 0.000 0.0028± 0.000
NLL + MMD (logit) 0.6518± 0.034 0.1144± 0.037 0.0669± 0.022 — 0.0040± 0.001 —
NLL + Sink (logit) 0.5883± 0.054 0.0545± 0.051 0.0369± 0.039 — 0.0030± 0.001 —
NLL + Adv (logit) 0.6583± 0.009 0.1230± 0.018 0.0712± 0.022 — 0.0041± 0.001 —

ACS-T

n= 172508
d= 1567

NLL + MMD (latent) 0.6493± 0.002 0.0738± 0.004 30.6040± 1.314 97.9590± 0.358 0.0022± 0.000 0.0013± 0.000
NLL + Sink (latent) 0.5103± 0.007 0.0025± 0.005 0.0455± 0.014 99.7710± 0.229 0.0003± 0.000 0.0013± 0.000
NLL + Adv (latent) 0.6508± 0.003 0.0758± 0.005 25.2920± 2.395 94.9840± 2.629 0.0028± 0.001 0.0014± 0.000
NLL + MMD (logit) 0.6464± 0.004 0.0392± 0.006 0.1066± 0.038 — 0.0008± 0.000 —
NLL + Sink (logit) 0.6665± 0.002 0.0820± 0.005 0.2171± 0.107 — 0.0013± 0.000 —
NLL + Adv (logit) 0.6511± 0.002 0.0776± 0.004 0.0418± 0.007 — 0.0010± 0.000 —
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(a) Fairness MMD Latent based (b) Fairness Sinkhorn Divergence La-
tent based

(c) Fairness Adversarial Latent based

Figure 8: Latent based. Kendall ranking correlation matrix of task specific metric (DP ,Error), and DM metric
(MMD, Sinkhorn Divergence) across different fairness methods on ACS-T dataset

(a) Fairness MMD Logit based (b) Fairness Sinkhorn Divergence Logit
based

(c) Fairness Adversarial

Figure 9: Logit based Kendall ranking correlation matrix of task specific metric (DP ,Error), and DM metric
(MMD, Sinkhorn Divergence) across different fairness methods on ACS-T dataset

(a) Peak GPU memory allocated (GiB). (b) Runtime (minutes).

Figure 10: Compute profile for domain adaptation methods on MNIST→USPS: (a) peak GPU memory (GiB)
and (b) runtime (min). Each point is averaged over the same 10 runs used for Table 3.
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(a) NLL + Adv (MMD) (b) NLL + MMD (MMD) (c) NLL + Sink (MMD)

(d) NLL + Adv (Sink) (e) NLL + MMD (Sink) (f) NLL + Sink (Sink)

Figure 11: Error vs. MMD and Sinkhorn. Top: error vs. MMD. Bottom: error vs. Sinkhorn. U-shaped
trends are visible for MMD/Sink sweeps, while Adv shows weak correlation.
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(a) NLL + Adv (MMD) (b) NLL + MMD (MMD) (c) NLL + Sink (MMD)

(d) NLL + Adv (Sink) (e) NLL + MMD (Sink) (f) NLL + Sink (Sink)

Figure 12: Target Error vs. MMD and Sinkhorn. Top: target error vs. MMD. Bottom: target error vs.
Sinkhorn. U-shaped trends are visible for MMD/Sink sweeps; Adv shows weak correlation.
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D Related Work

Calibration Even though many deep learning mod-
els achieve high predictive performance, they often
produce unreliable predictions due to a lack of cali-
bration. Most deep learning models tend to be over-
confident, as indicated by spiking posterior distribu-
tions Guo et al. [2017a]. Several factors contribute to
this issue, including over-parameterized networks, in-
sufficient regularization, limited data, and imbalanced
label distributions Guo et al. [2017a]. There has been
extensive research on calibration in both classification
Bröcker [2009], Kull et al. [2017], Naeini et al. [2015b],
Platt et al. [1999b], Dwork et al. [2021], Hébert-
Johnson et al. [2018], Pleiss et al. [2017] and regres-
sion tasks Ziegel and Gneiting [2014], Kuleshov et al.
[2018], Gneiting and Ranjan [2013], Song et al. [2019a],
Zhao et al. [2020]. However, much of the commu-
nity’s focus has been on binary classification settings
Karandikar et al. [2021], Vaicenavicius et al. [2019a],
Bohdal et al. [2021], Platt et al. [1999a], Guo et al.
[2017a]. Recently, Marx et al. [2024a] extended cali-
bration into the distribution matching framework by
leveraging the Maximum Mean Discrepancy (MMD)-
based metric. This work unified recent advances in
calibration across classification and regression tasks
Kuleshov et al. [2018], Sahoo et al. [2021], Gneiting
and Ranjan [2013], Zhao et al. [2021], Pessach and
Shmueli [2022], Song et al. [2019a], Zhao et al. [2020],
Luo et al. [2022]. Among the various calibration meth-
ods, our work focuses on individual calibration Zhao
et al. [2020] conditioned on the variable x.

Fairness Fairness in machine learning has garnered
significant attention from the research community,
with the primary goal of ensuring that machine learn-
ing models do not exhibit bias toward specific groups
or individuals. Fairness algorithms are broadly cate-
gorized into two types: group fairness and individual
fairness. Group fairness emphasizes equitable treat-
ment across predefined demographic groups (e.g., male
and female), while individual fairness ensures that
similar individuals are treated similarly. To mitigate
bias in machine learning models, researchers have pro-
posed three primary strategies: preprocessing Crea-
ger et al. [2019], Lu et al. [2020], in-processing Chen
and Wu [2020], Chiu et al. [2024], and post-processing
Dwork et al. [2012], Hardt et al. [2016]. Prepro-
cessing techniques modify the data before training,
such as through normalization, relabeling, or reweight-
ing. Post-processing methods adjust model outputs
after training, typically at test time. In contrast, in-
processing approaches impose fairness constraints dur-
ing the training phase and have gained significant at-
tention due to their ability to directly influence model
behavior.

Our work focuses on in-processing methods, which are
particularly relevant for enforcing fairness constraints
during training. Prior studies in this area have pri-
marily concentrated on specific applications or meth-
ods, often restricting their analysis to either latent
space or logit space techniques. For instance, recent
benchmark efforts have predominantly explored latent
space approaches without extending their analysis to
logit space methods Han et al. [2023b]. Addition-
ally, these works often fail to provide a comprehen-
sive comparison across different fairness methods or
applications. In contrast, our study systematically
evaluates in-processing methods by leveraging fairness
techniques in both latent and logit spaces. We incorpo-
rate distribution-matching constraints and then evalu-
ate their effectiveness using both information-theoretic
and geometric divergence metrics. Consequently, we
have a more holistic understanding of the trade-offs be-
tween different fairness methods. By addressing these
gaps, our work provides a more comprehensive bench-
mark for group fairness methods compared to existing
literature.

Domain Adaptation Domain adaptation seeks to
enhance model generalization on out-of-distribution
data. In this work, we focus on closed-set unsuper-
vised domain adaptation, where the source and tar-
get domains share the same label space, but only the
source domain is labeled.

Early methods aligned source and target feature dis-
tributions using statistical losses—for example, inte-
grating a multi-kernel Maximum Mean Discrepancy
(MMD) loss into deep neural networks Long et al.
[2015]. Subsequent works refined these techniques
[Long et al., 2017, Bousmalis et al., 2016] or intro-
duced related MMD variants [?Zellinger et al., 2017,
Kang et al., 2019]. In parallel, adversarial approaches
have gained traction due to its flexibility and effective-
ness. By incorporating a domain discriminator that
distinguishes between source and target features, fea-
ture extractors can be trained to deceive the discrimi-
nator, thereby promoting domain-invariant represen-
tations [Ajakan et al., 2014, Ganin and Lempitsky,
2015, Ganin et al., 2016b, Tzeng et al., 2017]. Al-
though less common, recent studies have also leveraged
Sinkhorn divergences for domain adaptation [Pandya
et al., 2025, Han et al., 2025], offering a promising
alternative that efficiently aligns latent spaces via reg-
ularized optimal transport.

Many previous domain adaptation benchmarks eval-
uate models with dedicated designs that are intrin-
sically tied to specific divergence measures and task
formulations [Lalou et al., 2025, ?]. In contrast, our
work introduces a unified distribution matching frame-
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work that employs a generalized network architecture
across all experiments. By keeping the architecture
fixed, we interchange different divergence measures
(e.g., Sinkhorn, adversarial, MMD, and variational
methods) and systematically assess their relationship
with domain adaptation performance under uniform
experimental conditions.

D.1 Unified Training Objectives for
Distribution Matching

D.1.1 Comparison between
Information-Theoretic Divergence vs
Geometric Divergence

We broadly categorize differentiable divergences into
information-theoretic and geometric. Information-
theoretic divergences Amari and Cichocki [2010] are
usually estimated using a variational approximation.
Information-theoretic divergences have the elegant
property of being invariant under invertible transfor-
mations [Qiao and Minematsu, 2008] and thus are
very useful when operating in latent spaces where the
scale is irrelevant. Moreover, it can be computed with
O(N) for discrete measure Séjourné et al. [2023]. The
drawbacks are information-theoretic divergences usu-
ally require learning an auxiliary variational model,
which may be challenging itself and it is sensitive to
support mismatch Séjourné et al. [2023]. Geomet-
ric divergences on the other hand use distances be-
tween points in the space and thus vary with scale
Amari [2009]. This makes it more challenging to apply
geometric-based divergences in latent space as simple
scaling transformations drastically change these diver-
gence measures. However, the two most common ge-
ometric divergences, Wasserstein and MMD, can be
non-parametrically approximated using only a batch
of samples from both domains without the need to
train an auxiliary model. Also, geometric divergence
metrize weak* topology that is αn ⇀ α⇔ L(αn, α)→
0, which implies that a lower loss corresponds to closer
distribution matching Feydy et al. [2019b].

D.1.2 Information Theoretic Divergences via
Parametric Variational Bounds

Most differentiable approximations to information-
theoretic divergences are bounds that involve training
a variational model hϕ, such that the bound is tight
if optimized perfectly but otherwise remains a bound.
Adversarial GAN-based approaches form a variational
lower bound on a divergence. The standard GAN-
based loss bounds the JS divergence and trains a clas-
sifier with cross entropy loss ℓCE to predict the domain
label:

DADV(θ) := max
ϕ

Ep[−ℓCE(hϕ ◦ gθ(x), d)] ≤ DJSD(θ) .

(5)

Adversarial objectives for all f -divergences Sason and
Verdú [2016] and even Wasserstein distance Panare-
tos and Zemel [2019] (a geometric divergence) can be
formulated. Notice that the DM problem involves min-
imizing this approximation and thus it forms a min-
max, i.e., adversarial problem, hence the name.

In contrast to adversarial lower bounds, there have
been multiple approaches to form variational upper
bounds. One of the more common bounds is based
on a variational autoencoder (VAE) structure. Re-
cently, [Gong et al., 2024] generalized previous VAE-
based approaches into a self-contained loss similar to
the adversarial loss above that upper bounds the JSD:

DVAUB(θ) := min
ϕ

Ep
[
− log

(qϕ(x|z, d)
pθ(z|x, d)

· qϕ(z)
)]

+ C

(6)

≥ DJSD(θ) , (7)

where gθ(x; d, ϵ) is a stochastic encoder using the repa-
rameterization trick where ϵ ∼ N (0, I), qϕ(x, z|d) :=
qϕ(z)qϕ(x|z, d) is a decoder distribution where qϕ(z)
is a learnable prior distribution, and C is a constant
that is independent of θ and ϕ. If qϕ is minimized per-
fectly including the learnable prior distribution, then
the bound becomes equal to the JS divergence. Note
that this has a similar form to the adversarial approach
except that it is a min problem and thus forms a min-
min problem. A flow-based variant [Cho et al., 2022]
provides an upper bound that only depends on opti-
mizing the prior.

D.1.3 Non-Parametric Geometric
Divergences

Geometric divergences (e.g., Wasserstein, Sinkhorn or
MMD) vary with invertible transformations of the
space. Intuitively, they depend on the distances in the
space rather than ratios of densities as in information-
theoretic divergences. One natural approach is to
compute the distance between the domain distribution
means. However, the means having a distance of zero
is only necessary but not sufficient condition for the
distributions to be equal. The maximum mean dis-
crepancy (MMD) finds a function of random variables
that maximizes the expectation between the domain
distributions. While the function class could be a set
of neural networks as in MMD-GAN Li et al. [2017],
the most commonly used class of functions is a re-
producing kernel hilbert space (RKHS) Gretton et al.
[2012]. The MMD can be solved exactly when com-
paring empirical distributions, i.e., batches of samples
from each domain. Thus, this empirical MMD can be
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used as a plug-in estimator of the distribution-level
MMD:

D2
MMD(θ) ≈ D̂2

MMD(θ)
: = ∥µ̂1 − µ̂2∥2H (8)

= Ê[K(z1, z1)]− 2Ê[K(z1, z2)] + Ê[K(z2, z2)] , (9)

where H is an RKHS with kernel K, µ̂1 and µ̂2 are the
empirical (sample-based) means of domain 1 and 2 re-
spectively in H, and the expectations are based on un-
biased sample averages [Gretton et al., 2012]. This can
be seen as a generalization of comparing the empiri-
cal mean of the two distributions but using the implicit
infinite dimensional space of a RKHS. One of the chal-
lenges is that this scales quadratically in the number
of samples in the batch and thus cannot be computed
for very large batches. Additionally, the performance
can be sensitive to the kernel bandwidth parameter,
which can be non-trivial to select in practice.

Another geometric divergence is based on Wasserstein
distance. The Wasserstein-1 distance Panaretos and
Zemel [2019] is defined optimal transport cost between
the domain distributions using the the cost function
c(x,y) = ∥x − y∥2. The Wasserstein-1 between two
empirical distributions (i.e., samples) can be computed
by solving a linear program. Recently, linear program
neural network layers have been proposed, which could
be used to approximate it Mazouz et al. [2022]. How-
ever, solving a linear program for every batch of train-
ing samples is likely too expensive. In practice, an ap-
proximation to the Wasserstein distance based on an
entropy-regularized optimal transport problem is often
used. For this approximation, the Sinkhorn algorithm
Cuturi [2013], which only requires matrix-vector mul-
tiplications, is often used since it has a complexity of
O(m2Niter) where m is the dimensionality and Niter is
the max number of Sinkhorn iterations. This approx-
imation can be written as a regularized optimization
problem Cuturi [2013]:

D̂SINK(θ) :=
(
Eπ̂λ

[
c(z1, z2)

]
s.t. π̂λ := argmin

π̂∈Π
Eπ̂

[
∥z1 − z2∥2

]
+ λH(π̂)

)λ→0

≈ DW1 (10)

where π̂λ := argminπ̂∈Π Eπ̂[∥z1 − z2∥2] + λH(π̂) and
where π̂(z1, z2) ∈ Π is the empirical coupling distri-
bution between samples from each domain, Π corre-
sponds to the set of joint discrete probability distribu-
tions over z1 and z2 whose marginals are pθ(z|d=1)

and pθ(z|d = 2), respectively, and
λ→0
≈ means that

it approaches the true Wasserstein-1 distance as λ
goes to zero. Note that this has two approximations.
First, it compares a batch samples from each domain
rather than the population-level distributions. Sec-
ond, if λ > 0, then it forms an approximation to the
Wasserstein-1 distance. While the Sinkhorn algorithm
improves the computational complexity significantly,
the algorithm is still at least quadratic in the number
of samples in the batch and thus, like MMD, is difficult
to apply for a large number of samples.

Previously mentioned geometric divergences have
some problem, first MMD suffers from flat geometry,
which eventually result into vanishing gradient Feydy
et al. [2019b]. Also, vanilla OT causes dimension col-
lapse on source mapping due to D̂SINK(z1, z1) ̸= 0 by
entropic regularization, thus it will introduce bias solu-
tion. Therefore, Sinkhorn divergence addresses above
problem by interpolating between MMD and Sinkhorn
with additional auto correlation term to prevent bias.

D̂SINKD(θ)
def.
= D̂SINK(z1, z2)−

1

2
D̂SINK(z1, z1)

− 1

2
D̂SINK(z2, z2) (11)

D̂W1

ε→0←−−− D̂SINKD(θ)
ε→+∞−−−−−→ D̂2

MMD(θ) (12)

E Computation Requirements

All experiments were run on a single node with 4×
NVIDIA RTX A5000 GPUs (24 GiB each; 96 GiB to-
tal), NVIDIA driver 535.261.03, and CUDA 12.2. The
node uses a 1-socket AMD EPYC 7352 24-Core Pro-
cessor, 48 hardware threads, 128 MiB (8 instances) L3
cache, and 257G RAM, running Ubuntu 22.04 (Linux
5.15.0-152-generic)
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