
Unmasking the Author: Exploiting Code Language Models and Contrastive
Learning in Binary Code Authorship Attribution

1Kyung Min Ko, 1Nan Jiang, 1Lin tan
1Purdue University

{ko120, jiang719, lintan}@purdue.edu

Abstract

Extracting necessary source code authorship attributes is cru-
cial for successful identification. However, extracting such at-
tributes presents significant challenges in real-world scenar-
ios primarily due to various syntax rules in diverse program-
ming languages, average code line availability, and a limited
number of code samples per author. Initially, a common ap-
proach was to utilize source code to detect the author by ex-
tracting various features from source code such as design pat-
terns and the name of the variables. Even though source code
includes valuable features, often malware programs are only
left with binary executables. Therefore, it is common to apply
feature extraction for binary executables. Even though previ-
ous researchers developed solid solutions to solve the code
authorship tasks, to the best of our knowledge, there are cur-
rently no work-related code language models. In our research,
we are using the Code T5 model, which is capable of han-
dling code-specific semantics. Common code language mod-
els have limitations on input token length, so instead of using
the entire code, we leveraged functions present in the code.
We used functions as input for the model, then combined the
result to predict the author with majority votes. Furthermore,
we applied contrastive learning, which learns useful repre-
sentation from comparing similar and dissimilar dataset pairs
to not only improve the accuracy but also deal with code
with anonymous authors. We initially tested on 10 authors’
datasets from Google Code Jam. Furthermore, we tested on
the real-world malware dataset to expand our results. Our re-
sult demonstrates that predicting at the file level is also not
robust and unstable, since we found the model mostly relies
on functionality. Thus, we propose to predict at the function
level and use majority voting.

1. Introduction
The code authorship task has drawn the attention of vari-
ous research communities due to its potential applications.
Although de-anonymizing the author of the code may af-
fect possible privacy issues for programmers, there are valu-
able applications such as copyright dispute settlements, pro-
gramming analysis, and detecting the author of malware pro-
grams. Thus, the code authorship identification field is im-
pacted in various domains. In the education field, detecting
plagiarism from literature assignments has grown to detect
plagiarism from coding assignments (Elenbogen and Seliya
2008a). Moreover, copyright issues associated with coding

projects in the industry resulted in intellectual property in-
fringement (Shankland 2003). As a result, detecting viola-
tions of copyright in coding projects impacted the industry
(Wisse and Veenman 2015; Shankland 2003).

In the computer security domain, detecting the author of
the malware continued to draw attention. Initially, a com-
mon approach was to utilize source code to detect the author
by extracting various features from source code such as de-
sign pattern and name of the variable to design metrics and
author’s profile (Antoniol, Fiutem, and Cristoforetti 1998;
Koschke, Falke, and Frenzel 2006). The feature extraction of
the distinctive coding style of the author in code authorship
tasks is key for successful identification. However, this task
is complex due to potential variations in the author’s coding
style working in different environments. Furthermore, often
malware is only left with binary executables, which limits us
from utilizing raw source code. Therefore, instead of manu-
ally extracting features from source code, we are leveraging
word embeddings from the output of code language models
using binary executables as inputs. Research has proven that
we can earn source code features from the decompilation of
binary executables (Caliskan et al. 2015).

Previous studies leveraged various machine learning and
deep learning models to apply on code authorship tasks,
which includes feed forward network (MacDonell et al.
1999), decision tree model (Elenbogen and Seliya 2008a),
random forest classification (Caliskan et al. 2015), RNN
(Katz, Ruchti, and Schulte 2018), Bi-LSTM (Alsulami et al.
2017), and CNN (Abuhamad et al. 2019). Even though pre-
vious researchers developed solid solutions to solve the code
authorship task, to the best of our knowledge, there is cur-
rently any work-related code language model. The code lan-
guage model uses transformers that solve vanishing gradi-
ent problems from recurrent networks, and it is using a self-
attention mechanism to weigh the importance of different
words when making predictions (Vaswani et al. 2017).

In our research, we are using the Code T5 model, which
is capable of handling code-specific semantics (Wang et al.
2021). For our datasets, we are mainly focusing on solving
malware problems, so we are using decompiled binary ex-
citable files as input. Our datasets consist of sources from
Google Code Jam and real-world malware programs. In our
work, we proposed a novel approach, “function level learn-
ing.” In general, people use the entire source code to input



the model at once to generate embeddings. However, this
is problematic since most code language models have input
length limit of 512 tokens (Wang et al. 2021), but common
malware programs exceed this limit length. Therefore, our
function level learning can address this problem by parti-
tioning the entire code into function level, then pass through
the model to produce embeddings. In this way, we are not
losing any information from our data. Moreover, we proved
that function level training helps the model to learn the mal-
ware code more stable and robust.

In addition, we leveraged the concept of contrastive learn-
ing to solve authorship tasks without using labels (Chen
et al. 2020). In the real world scenario, it is not always fea-
sible to earn well labeled data. Labels may be expensive,
time consuming, or naturally not available. Especially in the
cyber security domain, the anonymity of code attribution is
protected, thus hard for us to collect labeled data (Buczak
and Guven 2015). Therefore, contrastive learning is suitable
for solving malware authorship tasks. Contrastive learning
uses a positive pair and negative pair of input to minimize
the distance between data representation for the positive pair
and maximize the distance for the negative pair. In our case,
we can use code from the same author as a positive pair, and
combination with another author as a negative pair. We em-
pirically proved that applying both function level learning
and contrastive learning significantly improved the perfor-
mance than only utilizing function level learning.

The evaluation of Goolge Code Jam data set with our
baseline model with simple classification header, shows
us that we need more advanced method to classify larger
amount of authors. Our function level learning improved the
accuracy on real world data set with 3 4% improvements.
Furthermore, applying both function level learning and con-
trastive learning significantly improved the performance by
maximum of 30% compared to baseline model.

Contributions Our contributions are summarized as fol-
lows.
• In a novel contribution to the field of binary code author-

ship task, our research is the first to leverage the code
language model to classify the author of malware.

• We developed a novel training method ”function level
learning” to leverage function level input instead of file
level input, and tested the effectiveness of our approach
on real world malware program dataset.

• We introduced the concept of contrastive learning for
solving code authorship tasks without use of labels.

2. Related Work
In the field of intersecting computer security and artificial
intelligence, there is ongoing research actively conducting
code authorship experiments to improve the accuracy of
larger datasets. Approaches for solving code authorship task
can be segmented into several categories.

The first group employs a ranking based classification.
Frantzeskou et al. (Frantzeskou et al. 2006) presented a
new approach called SCAP (Source Code Author Profiles),
which used one of the natural language domain features,
byte-level n-grams to generate the author profile to rank the

similarity between authors, which ended up with 96% ac-
curacy with 30 author datasets. The SCAP method has the
advantage that it is independent of source code language
because of deriving features from not only individual lan-
guages (Frantzeskou et al. 2006). Another ranking approach
is proposed by Burrows et al. (Burrows, Uitdenbogerd, and
Turpin 2009), which converted 1597 student programming
assignments into retrieval documents. Burrows et al. (Bur-
rows, Uitdenbogerd, and Turpin 2009) utilized the Zettair
search engine to rank the query from the documents and
ended up with 76.78% within classifying 10 authors.

The second group emphasizes the use of metrics to clas-
sify the author. Krsul (Shankland 2003) used 60 metrics de-
rived from three major areas, which are programming lay-
out metrics, programming style metrics, and programming
structure metrics. However, in Krsul’s (Krsul 1994) metrics,
there are such metrics that require compilation and human
intervention that puts limitations on their methods. The best-
performing metric was Korthari’s metric (MacDonell et al.
1999), which develops author profiles based on n-gram. In
their case study, Korthari obtained 90% accuracy in choos-
ing the top three ordered nearest matches.

The third group is machine learning approaches. Mac-
Donell et all. (MacDonell et al. 1999) extracted 26 author-
ship metrics from 351 programs by 7 distinguishable au-
thors. MacDonell et al. (MacDonell et al. 1999) used a feed-
forward network to extract features from programs. Bruce
and Naeem (Elenbogen and Seliya 2008b) utilized a data
mining-based approach to develop programming style pro-
files from students who are taking two lower-level computer
science courses, then used a decision tree model to yield
prediction. Caliskan et al. (Caliskan et al. 2015) used bi-
nary executable files as source code and adopted a random
forest classification method for prediction. Katz et al (Katz,
Ruchti, and Schulte 2018) also used binary executable files
as a dataset, and they used the sequence to sequence the
RNN model. Alsulami et al. (Alsulami et al. 2017) used
LSTM and Bi-LSTM networks to traverse abstract syn-
tax tree (AST) using a depth-first search (DFS) algorithm.
Abuhamad et al. (Abuhamad et al. 2019) identified authors
with adopting convolutional neural network (CNN) based
systems evaluated on Google Code Jam datasets and Github
datasets.

3. Method
Our ultimate goal is to identify the author using given bi-
nary executables. Instead of using raw binary executables,
we leveraged decompiled binary code. Since research has
proven that we can learn source code features from the de-
compilation of binary executables, it is more viable to utilize
decompiled sources (Caliskan et al. 2015). We fine-tuned the
Code T5-base model with our decompiled datasets to exper-
iment in different settings.

3.1 Function Level Learning
Instead of using file level training, which uses entire code
as an input to train the model, we discovered novel function
level learning. The Code T5 model has a maximum input



limit of 512 tokens, but generally, malware programs exceed
this input limit (Wang et al. 2021). Therefore, instead of us-
ing truncated code, we partitioned the program with func-
tions. Then, we combined the predictions from the model to
figure out the majority-voted author.

3.1 Contrastive Learning
Contrastive learning guides the model to understand and dis-
tinguish between different coding styles by using positive
pairs and negative pairs (Chen et al. 2020). In our case, we
can use code written by the same author as a positive pair
and a different author as a negative pair. Throughout the
training, the model tries to pull together the data represen-
tation of positive pairs closer and push apart negative pairs.
This approach not only forms an ideal data distribution to
solve authorship tasks but also allows the model to learn the
various nuances that exist in different coding styles.

When we are generating the data set, we label +1 for pos-
itive pairs with the same authors and -1 for negative pairs
with different authors. The reason behind this is because
when we are calculating cosine similarity, output of ideal
positive pair is +1 and negative pair is -1. Then, we used
NT-Xent loss, which is a common loss used in contrastive
learning for our back propagation (Chen et al. 2020). We in-
put each input element of pair to calculate loss as shown on
equation 1.

ℓ(i, j) = − log

(
exp (sim(zi, zj)/τ)∑2N

k=1 ⊮[k ̸=i] exp (sim(zi, zk)/τ)

)
(1)

Figure 1: Work Flow of Classification using Code T5

4. Results
4.1 Experimental Setup
For our experiment, we used two different data sets. First
data set is consisted of Google Code Jam code. This data set
is used for evaluating our performance for baseline model.
Second data set is consisted of real malware program data
set. It contains decompiled source code from malware pro-
gram. We sampled this code in three different ways to eval-
uate our performance in different settings. First, we sampled
using random sampling method to sample 10 authors data
set. Second, we used code from different family of malware
to sample data thus we can collect codes that shares less
features. Lastly, we manually sampled code that shares less
overlap, which is going to be the hardest data set to evaluate.
We used Code-T5 base model with one feed forward classi-
fication layer to perform our experiments as shown on figure

1 (Wang et al. 2021). Moreover, we claim that our results
are robust since we used cross validation with 10 folds to
evaluate our method.

Figure 2: Comparing results between 10 and 100 Authors
from Google Code Jam

10 Authors Accuracy 100 Authors Accuracy
76% 45%

Table 1: Comparison of 10 Author and 100 Author Dataset
Accuracies

4.2 Google Code Jam
We took experiments on Google Code Jam data set with 10
and 100 authors to observe the result on our baseline model.
The reason for using this Google Code Jam data set is be-
cause this data is consisted of stable codes, which is good
for starting point to evaluate our baseline method. There-
fore, we started our experiment with Google Code Jam data
set to test our baseline method, which is consisted of sim-
ple classification header and Code T5 encoder. As we can
observe on figure 2, with our simple approach, we could ob-
tain 76% accuracy on 10 authors data set. However, it was
hard to classify 100 authors for our baseline method.

4.3 Real World Malware Data Set
We learned that our baseline method with simple classifica-
tion header couldn’t solve 100 authors data set. Therefore,
we need better approach to handle complex task thus we
applied our novel function level training process. The large
language models has common input length limit of 512 to-
kens. Therefore, it is hard to put entire malware source code
within given length limit. Our novel function level training
process partition the original code in function level, so we
do not loss our data. We claim that function level training
process is more stable and robust since we not only input all
of our data but also it is easier for our code language model
to learning the data representation in function level.

We ran the experiments in three different settings, and
each setting has different level of hardness for classifying.
The random sampled file is our baseline, different family file
is considered as medium level, and less overlap file is con-
sidered as the hardest file to classify the author. As we can



observe on the table 2, the accuracy for random sampled file
is highest with 67%, different family file has second high-
est accuracy with 47%, and as we expected the less overlap
file has lowest accuracy with 35%. Furthermore, the func-
tion level training process improved the random sampled file
with 3% and less overlap file with 4% improvement. How-
ever, the function level training could not improve the accu-
racy for different family file. Therefore, we further applied
concept of contrastive learning to cover this up.

Accuracy File Level Function Level
Random Sampled 67% 70% (+3%)
Different Family 47% 45% (-2%)

Less Overlap 35% 39% (+4%)

Table 2: Comparison of File Level and Function Level Ac-
curacy

4.4 Real World Malware Data Set with Contrastive
Learning
As we can see on the table 3, before applying contrastive
learning, the accuracy for less overlap file was only 35%,
but the contrastive learning improved maximum of 34% if
we apply both function level training process and contrastive
learning. Moreover, the different family file had 47% ac-
curacy without applying contrastive learning, but the con-
trastive learning improve to 74%. The effects of contrastive
learning in random sampled file was not significant, and we
are assuming that our baseline was suitable for solving this
file. Next, we compared the effectiveness of function level
training process versus original file level training. We can
clearly see that applying both contrastive learning and func-
tion level training significantly improved overall accuracy
on different data sets. For random sampled file, we could
improve the about 8%. For different family file, the func-
tion level improved 7% and obtained 74% accuracy. The less
overlap file has improvement of 2%, which is considered as
less improvement compared to other files. However, the per-
formance of less overlap file improved from 35% to 69%, so
improvement of 2% from file level learning to function level
learning is reasonable.

Accuracy File Level Function Level
Random Sampled 68% 76% (+8%)
Different Family 67% 74% (+7%)

Less Overlap 67% 69% (+2%)

Table 3: Comparison of File Level and Function Level Ac-
curacies

5. Conclusion
We first experimented with Google Code Jam data set to
observe our performance for baseline method. The result
shows us that solving complex task with only classification
header is tough. Therefore, we moved on to developing our
novel function level training process, which uses partition

of entire code to avoid loosing data by truncation due to in-
put length limit. We experimented our function level training
process on real world data set with three different sampling
method to evaluate our result in various settings. However,
only applying function level training method did not signif-
icantly improved the performance thus we came out with
contrastive learning. By applying both contrastive learning
and function level training method, we could obtain maxi-
mum improvement of 34% from less overlap file. Therefore,
we concluded that applying both function level training ap-
proach and contrastive learning is effective to solve code au-
thorship task. Our future work will be further improving the
performance using advanced feature extraction method such
as AST.

6. Future Work
We are planning to apply proposed method from SimCSE
to generate postive pairs using dropout method to furthher
improve accuracy (Gao, Yao, and Chen 2021). Furthermore,
we are going to input AST from decompiled code to guide
our model to learn the coding style effectively.

7. Acknowledgment
This research is based upon work supported by Purude Un-
dergraduate Summer Research Fellowship program (SURF).
Special thanks to professor Tan and Nan for giving us help-
ful advice during project.

8. Personal Thoughts About SURF
This research program was really helpful for me to learn the
concept of natural language processing and its application
to solving malware authorship task. Even though my mentor
Nan was away from the campus, he was really helpful by
answering my questions using email.

References
Abuhamad, M.; Rhim, J.-s.; AbuHmed, T.; Ullah, S.; Kang,
S.; and Nyang, D. 2019. Code authorship identification us-
ing convolutional neural networks. Future Generation Com-
puter Systems, 95: 104–115.
Alsulami, B.; Dauber, E.; Harang, R.; Mancoridis, S.; and
Greenstadt, R. 2017. Source code authorship attribution
using long short-term memory based networks. In Com-
puter Security–ESORICS 2017: 22nd European Symposium
on Research in Computer Security, Oslo, Norway, Septem-
ber 11-15, 2017, Proceedings, Part I 22, 65–82. Springer.
Antoniol, G.; Fiutem, R.; and Cristoforetti, L. 1998. Using
metrics to identify design patterns in object-oriented soft-
ware. In Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No. 98TB100262), 23–34. IEEE.
Buczak, A. L.; and Guven, E. 2015. A survey of data mining
and machine learning methods for cyber security intrusion
detection. IEEE Communications surveys & tutorials, 18(2):
1153–1176.
Burrows, S.; Uitdenbogerd, A. L.; and Turpin, A. 2009.
Application of information retrieval techniques for source



code authorship attribution. In Database Systems for Ad-
vanced Applications: 14th International Conference, DAS-
FAA 2009, Brisbane, Australia, April 21-23, 2009. Proceed-
ings 14, 699–713. Springer.
Caliskan, A.; Yamaguchi, F.; Dauber, E.; Harang, R.; Rieck,
K.; Greenstadt, R.; and Narayanan, A. 2015. When coding
style survives compilation: De-anonymizing programmers
from executable binaries. arXiv preprint arXiv:1512.08546.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International conference on machine learning,
1597–1607. PMLR.
Elenbogen, B. S.; and Seliya, N. 2008a. Detecting out-
sourced student programming assignments. Journal of Com-
puting Sciences in Colleges, 23(3): 50–57.
Elenbogen, B. S.; and Seliya, N. 2008b. Detecting out-
sourced student programming assignments. Journal of Com-
puting Sciences in Colleges, 23(3): 50–57.
Frantzeskou, G.; Stamatatos, E.; Gritzalis, S.; and Katsikas,
S. 2006. Effective identification of source code authors using
byte-level information. In Proceedings of the 28th interna-
tional conference on Software engineering, 893–896.
Gao, T.; Yao, X.; and Chen, D. 2021. Simcse: Simple con-
trastive learning of sentence embeddings. arXiv preprint
arXiv:2104.08821.
Katz, D. S.; Ruchti, J.; and Schulte, E. 2018. Using recurrent
neural networks for decompilation. In 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evolution and
Reengineering (SANER), 346–356. IEEE.
Koschke, R.; Falke, R.; and Frenzel, P. 2006. Clone detec-
tion using abstract syntax suffix trees. In 2006 13th Working
Conference on Reverse Engineering, 253–262. IEEE.
Krsul, I. 1994. Authorship analysis: Identifying the author
of a program (Technical report no. CSD-TR-94-030). The
COAST project, Department of computer science, Purdue
University.
MacDonell, S. G.; Gray, A. R.; MacLennan, G.; and Sal-
lis, P. J. 1999. Software forensics for discriminating be-
tween program authors using case-based reasoning, feedfor-
ward neural networks and multiple discriminant analysis. In
ICONIP’99. ANZIIS’99 & ANNES’99 & ACNN’99. 6th In-
ternational Conference on Neural Information Processing.
Proceedings (Cat. No. 99EX378), volume 1, 66–71. IEEE.
Shankland, S. 2003. Sco sues big blue over unix, linux.
CNET News. com.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wang, Y.; Wang, W.; Joty, S.; and Hoi, S. C. 2021. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. arXiv preprint
arXiv:2109.00859.
Wisse, W.; and Veenman, C. 2015. Scripting dna: Identi-
fying the javascript programmer. Digital Investigation, 15:
61–71.


